Exemple #1
0
def train(args):
    """
    trains the reading comprehension model
    """
    logger = logging.getLogger("brc")
    logger.info('Loading vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.pkl'), 'rb') as fin:
        vocab = pickle.load(fin)
    fin.close()
    pad_id = vocab.get_id(vocab.pad_token)
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          args.prepared_dir, args.train_files, args.dev_files,
                          args.test_files)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    g = tf.Graph()
    with g.as_default():
        rc_model = RCModel(vocab.embeddings, pad_id, args)
        del vocab
        # Train
        with tf.name_scope("Train"):
            logger.info('Training the model...')
            rc_model.train(brc_data,
                           args.epochs,
                           args.batch_size,
                           save_dir=args.result_dir,
                           save_prefix='test.predicted',
                           dropout_keep_prob=args.dropout_keep_prob)
        tf.summary.FileWriter(args.summary_dir, g).close()
        with tf.name_scope('Valid'):
            assert len(args.dev_files) > 0, 'No dev files are provided.'
            logger.info('Evaluating the model on dev set...')
            dev_batches = brc_data.gen_mini_batches('dev',
                                                    args.batch_size,
                                                    pad_id=pad_id,
                                                    shuffle=False)
            dev_loss, dev_bleu_rouge = rc_model.evaluate(
                dev_batches,
                result_dir=args.result_dir,
                result_prefix='dev.predicted')
            logger.info('Loss on dev set: {}'.format(dev_loss))
            logger.info('Result on dev set: {}'.format(dev_bleu_rouge))
            logger.info('Predicted answers are saved to {}'.format(
                os.path.join(args.result_dir)))
        with tf.name_scope('Test'):
            assert len(args.test_files) > 0, 'No test files are provided.'
            logger.info('Predicting answers for test set...')
            test_batches = brc_data.gen_mini_batches('test',
                                                     args.batch_size,
                                                     pad_id=pad_id,
                                                     shuffle=False)
            rc_model.evaluate(test_batches,
                              result_dir=args.result_dir,
                              result_prefix='test.predicted')
Exemple #2
0
def predict(args):
    """
    predicts answers for test files
    """
    logger = logging.getLogger("brc")
    logger.info('Load data_set and vocab...')
    # with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
    with open(args.vocab_path, 'rb') as fin:
        vocab = pickle.load(fin)
    assert len(args.test_files) > 0, 'No test files are provided.'
    brc_data = BRCDataset(args.max_p_num,
                          args.max_p_len,
                          args.max_q_len,
                          test_files=args.test_files)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Restoring the model...')
    rc_model = RCModel(vocab, args)
    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo)
    logger.info('Predicting answers for test set...')
    test_batches = brc_data.gen_mini_batches('test',
                                             args.batch_size,
                                             pad_id=vocab.get_id(
                                                 vocab.pad_token),
                                             shuffle=False)
    rc_model.evaluate(test_batches,
                      result_dir=args.result_dir,
                      result_prefix='test.predicted')
Exemple #3
0
def evaluate(args):
    """
    evaluate the trained model on dev files
    """
    logger = logging.getLogger("brc")
    logger.info('Load data_set and vocab...')
    # with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
    with open(args.vocab_path, 'rb') as fin:
        vocab = pickle.load(fin)
    assert len(args.dev_files) > 0, 'No dev files are provided.'
    brc_data = BRCDataset(args.max_p_num,
                          args.max_p_len,
                          args.max_q_len,
                          dev_files=args.dev_files)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Restoring the model...')
    rc_model = RCModel(vocab, args)
    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo)
    logger.info('Evaluating the model on dev set...')
    dev_batches = brc_data.gen_mini_batches('dev',
                                            args.batch_size,
                                            pad_id=vocab.get_id(
                                                vocab.pad_token),
                                            shuffle=False)
    dev_loss, dev_bleu_rouge = rc_model.evaluate(dev_batches,
                                                 result_dir=args.result_dir,
                                                 result_prefix='dev.predicted')
    logger.info('Loss on dev set: {}'.format(dev_loss))
    logger.info('Result on dev set: {}'.format(dev_bleu_rouge))
    logger.info('Predicted answers are saved to {}'.format(
        os.path.join(args.result_dir)))
Exemple #4
0
def evaluate(args):
    logger = logging.getLogger("QAPointNet")
    logger.info("====== evaluating ======")
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)

    assert len(args.dev_files) > 0, 'No dev files are provided.'
    dataloader = BRCDataset(args.max_p_num,args.max_p_len, args.max_q_len,args.save_dir, dev_files=args.dev_files)

    num_train_steps = int(
        len(dataloader.train_set) / args.batch_size * args.epochs)
    num_warmup_steps = int(num_train_steps * args.warmup_proportion)
    logger.info('Converting text into ids...')
    dataloader.convert_to_ids(vocab)

    logger.info('Restoring the model...')
    model = RCModel(vocab, num_train_steps,num_warmup_steps,args)
    model.restore(args.model_dir, 'BIDAF_42000')
    logger.info('Evaluating the model on dev set...')
    dev_batches = dataloader.gen_mini_batches('dev', 64, vocab.get_word_id(vocab.pad_token),shuffle=False)

    dev_loss, dev_bleu_rouge = model.evaluate(
        dev_batches, result_dir=args.result_dir, result_prefix='dev.predicted')

    logger.info('Loss on dev set: {}'.format(dev_loss))
    logger.info('Result on dev set: {}'.format(dev_bleu_rouge))
    logger.info('Predicted answers are saved to {}'.format(os.path.join(args.result_dir)))
Exemple #5
0
def evaluate(args):
    """
    对训练好的模型进行验证
    """
    logger = logging.getLogger("brc")
    logger.info('加wudi...')
    logger.info('加载数据集和词汇表...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
    assert len(args.dev_files) > 0, '找不到验证文件.'
    brc_data = BRCDataset(args.max_p_num,
                          args.max_p_len,
                          args.max_q_len,
                          dev_files=args.dev_files)
    logger.info('把文本转化为id序列...')
    brc_data.convert_to_ids(vocab)
    logger.info('重载模型...')
    rc_model = RCModel(vocab, args)
    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo)
    logger.info('验证模型...')
    dev_batches = brc_data.gen_mini_batches('dev',
                                            args.batch_size,
                                            pad_id=vocab.get_id(
                                                vocab.pad_token),
                                            shuffle=False)
    dev_loss, dev_bleu_rouge = rc_model.evaluate(dev_batches,
                                                 result_dir=args.result_dir,
                                                 result_prefix='dev.predicted')
    logger.info('验证集上的损失为: {}'.format(dev_loss))
    logger.info('验证集的结果: {}'.format(dev_bleu_rouge))
    logger.info('预测的答案证保存到 {}'.format(os.path.join(args.result_dir)))
Exemple #6
0
def predict(args):
    """
    预测测试文件的答案
    """
    logger = logging.getLogger("brc")
    logger.info('加载数据集和词汇表...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
    assert len(args.test_files) > 0, '找不到测试文件.'
    brc_data = BRCDataset(args.max_p_num,
                          args.max_p_len,
                          args.max_q_len,
                          test_files=args.test_files)
    logger.info('把文本转化为id序列...')
    brc_data.convert_to_ids(vocab)
    logger.info('重载模型...')
    rc_model = RCModel(vocab, args)
    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo)
    logger.info('预测测试集的答案...')
    test_batches = brc_data.gen_mini_batches('test',
                                             args.batch_size,
                                             pad_id=vocab.get_id(
                                                 vocab.pad_token),
                                             shuffle=False)
    rc_model.evaluate(test_batches,
                      result_dir=args.result_dir,
                      result_prefix='test.predicted')
Exemple #7
0
def predict(args):
    logger = logging.getLogger("QAPointNet")

    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)

    assert len(args.test_files) > 0, 'No test files are provided.'
    dataloader = BRCDataset(args.max_p_num,
                            args.max_p_len,
                            args.max_q_len,
                            args.save_dir,
                            test_files=args.test_files)
    num_train_steps = int(
        len(dataloader.train_set) / args.batch_size * args.epochs)
    num_warmup_steps = int(num_train_steps * args.warmup_proportion)
    logger.info('Converting text into ids...')
    dataloader.convert_to_ids(vocab)
    logger.info('Restoring the model...')

    model = RCModel(vocab, num_train_steps, num_warmup_steps, args)
    model.restore(args.model_dir, 'BIDAF_18000')
    logger.info('Predicting answers for test set...')
    test_batches = dataloader.gen_mini_batches('test',
                                               64,
                                               vocab.get_word_id(
                                                   vocab.pad_token),
                                               shuffle=False)

    model.evaluate(test_batches,
                   result_dir=args.result_dir,
                   result_prefix='test.predicted')
Exemple #8
0
def evaluate(args):
    """
       predicts answers for test files
       """
    logger = logging.getLogger("brc")
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)

#  assert len(args.test_files) > 0, 'No test files are provided.'

# brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len, args.max_train_sample_num,args.test_files, use_type="test")
    brc_data = BRCDataset(args.max_p_num,
                          args.max_p_len,
                          args.max_q_len,
                          args.max_train_sample_num,
                          args.dev_files,
                          use_type="dev")

    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)

    rc_model = S_netModel(vocab, args)
    logger.info('Restoring the model...')
    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo)
    logger.info('evaluate answers for dev set...')
    test_batches = brc_data.gen_mini_batches('dev',
                                             args.batch_size,
                                             pad_id=vocab.get_id(
                                                 vocab.pad_token),
                                             shuffle=False)
    #rc_model.predict(test_batches,result_dir=args.result_dir, result_prefix=args.result_prefix)
    rc_model.evaluate(test_batches,
                      result_dir=args.result_dir,
                      result_prefix=args.result_prefix)
Exemple #9
0
def evaluate(args):
    """
    evaluate the trained model on dev files
    """
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
    assert len(args.dev_files) > 0, 'No dev files are provided.'
    brc_data = BRCDataset(args.max_p_num,
                          args.max_p_len,
                          args.max_q_len,
                          dev_files=args.dev_files)
    brc_data.convert_to_ids(vocab)
    rc_model = RCModel(vocab, args)
    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo + '_7')
    dev_batches = brc_data.gen_mini_batches('dev',
                                            args.batch_size,
                                            pad_id=vocab.get_id(
                                                vocab.pad_token),
                                            shuffle=False)
    bleu_rouge = rc_model.evaluate(dev_batches)
Exemple #10
0
def predict(args):
    """
    predicts answers for test files
    """
    logger = logging.getLogger("brc")
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
    assert len(args.test_files) > 0, 'No test files are provided.'
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          test_files=args.test_files)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Restoring the model...')
    rc_model = RCModel(vocab, args)
    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo)
    logger.info('Predicting answers for test set...')
    test_batches = brc_data.gen_mini_batches('test', args.batch_size,
                                             pad_id=vocab.get_id(vocab.pad_token), shuffle=False)
    rc_model.evaluate(test_batches,
                      result_dir=args.result_dir, result_prefix='test.predicted')
Exemple #11
0
def predict(args):
    """
    predicts answers for test files
    """
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
    assert len(args.test_files) > 0, 'No test files are provided.'
    brc_data = BRCDataset(args.max_p_num,
                          args.max_p_len,
                          args.max_q_len,
                          test_files=args.test_files)
    brc_data.convert_to_ids(vocab)
    rc_model = RCModel(vocab, args)
    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo)
    test_batches = brc_data.gen_mini_batches('test',
                                             args.batch_size,
                                             pad_id=vocab.get_id(
                                                 vocab.pad_token),
                                             shuffle=False)
    rc_model.evaluate(test_batches,
                      result_dir=args.result_dir,
                      result_prefix='test.predicted')
Exemple #12
0
def evaluate(args):
    """
    evaluate the trained model on dev files
    """
    logger = logging.getLogger("brc")
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
    assert len(args.dev_files) > 0, 'No dev files are provided.'
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.dev_files)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Restoring the model...')
    rc_model = RCModel(vocab, args)
    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo)
    logger.info('Evaluating the model on dev set...')
    dev_batches = brc_data.gen_mini_batches('dev', args.batch_size,
                                            pad_id=vocab.get_id(vocab.pad_token), shuffle=False)
    dev_loss, dev_bleu_rouge = rc_model.evaluate(
        dev_batches, result_dir=args.result_dir, result_prefix='dev.predicted')
    logger.info('Loss on dev set: {}'.format(dev_loss))
    logger.info('Result on dev set: {}'.format(dev_bleu_rouge))
    logger.info('Predicted answers are saved to {}'.format(os.path.join(args.result_dir)))
Exemple #13
0
def predict(args):
    """
    predicts answers for test files
    """
    logger = logging.getLogger("brc")
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
    assert len(args.test_files) > 0, 'No test files are provided.'
    brc_data = BRCDataset(args.max_p_num,
                          args.max_p_len,
                          args.max_q_len,
                          args.max_word_len,
                          test_files=args.test_files)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Restoring the model...')
    rc_model = RCModel(vocab, args)
    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo)
    rc_model.finalize()
    # 增加完所有操作后采用sess.graph.finalize()
    # 来使得整个graph变为只读的
    # 注意:tf.train.Saver()
    # 也算是往graph中添加node, 所以也必须放在finilize前
    # 但是,,tf.train.Saver()
    # 只会存储
    # 在该Saver声明时已经存在的变量!!!
    logger.info('Predicting answers for test set...')
    test_batches = brc_data.gen_mini_batches('test',
                                             args.batch_size,
                                             pad_id=vocab.get_id(
                                                 vocab.pad_token),
                                             shuffle=False)
    rc_model.evaluate(test_batches,
                      result_dir=args.result_dir,
                      result_prefix='test.predicted')
Exemple #14
0
def predict(args):
    """
    predicts answers for test files
    """
    logger = logging.getLogger("brc")
    logger.info('Load data_set and vocab...')
    with open(args.vocab_path, 'rb') as fin:
        vocab = pickle.load(fin)
    assert len(args.test_files) > 0, 'No test files are provided.'
    brc_data = BRCDataset(args.algo,
                          args.max_p_num,
                          args.max_p_len,
                          args.max_q_len,
                          args.max_a_len,
                          test_files=args.test_files)
    logger.info('Converting text into ids...')

    brc_data.convert_to_ids(vocab)

    logger.info('Restoring the model...')
    rc_model = RCModel(vocab, args)
    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo)
    logger.info('Predicting answers for test set...')
    test_batches = brc_data.gen_mini_batches('test',
                                             args.batch_size,
                                             pad_id=vocab.get_id(
                                                 vocab.pad_token),
                                             shuffle=False)
    if args.algo == 'YESNO':
        qa_resultPath = args.test_files[0]  #只会有一个文件!
        (filepath, tempfilename) = os.path.split(qa_resultPath)
        (qarst_filename, extension) = os.path.splitext(tempfilename)
        result_prefix = qarst_filename
    else:
        result_prefix = 'test.predicted.qa'

    rc_model.evaluate(test_batches,
                      result_dir=args.result_dir,
                      result_prefix=result_prefix)
    if args.algo == 'YESNO':  #将YESNO结果合并入QA结果
        qa_resultPath = args.test_files[0]  #只会有一个文件!
        yesno_resultPath = args.result_dir + '/' + result_prefix + '.YESNO.json'
        out_file_path = args.result_dir + '/' + result_prefix + '.134.class.' + str(
            args.run_id) + '.json'

        #首先载入YESNO部分的预测结果
        yesno_records = {}
        with open(yesno_resultPath, 'r') as f_in:
            for line in f_in:
                sample = json.loads(line)
                yesno_records[sample['question_id']] = line

        total_rst_num = 0
        with open(qa_resultPath, 'r') as f_in:
            with open(out_file_path, 'w') as f_out:
                for line in f_in:
                    total_rst_num += 1
                    sample = json.loads(line)
                    if sample['question_id'] in yesno_records:
                        line = yesno_records[sample['question_id']]
                    f_out.write(line)

        print('total rst num : ', total_rst_num)
        print('yes no label combining done!')
Exemple #15
0
def train(logger, args):
    """train a model"""
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        if six.PY2:
            vocab = pickle.load(fin)
        else:
            vocab = pickle.load(fin, encoding='bytes')
        logger.info('vocab size is {} and embed dim is {}'.format(
            vocab.size(), vocab.embed_dim))
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          args.trainset, args.devset)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    if not args.use_gpu:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    else:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
    if args.enable_ce:
        main_program.random_seed = args.random_seed
        startup_prog.random_seed = args.random_seed
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
                args.hidden_size, vocab, args)
            # clone from default main program and use it as the validation program
            inference_program = main_program.clone(for_test=True)

            # build optimizer
            if args.optim == 'sgd':
                optimizer = fluid.optimizer.SGD(
                    learning_rate=args.learning_rate)
            elif args.optim == 'adam':
                optimizer = fluid.optimizer.Adam(
                    learning_rate=args.learning_rate)
            elif args.optim == 'rprop':
                optimizer = fluid.optimizer.RMSPropOptimizer(
                    learning_rate=args.learning_rate)
            else:
                logger.error('Unsupported optimizer: {}'.format(args.optim))
                exit(-1)
            if args.weight_decay > 0.0:
                obj_func = avg_cost + args.weight_decay * l2_loss(main_program)
                optimizer.minimize(obj_func)
            else:
                obj_func = avg_cost
                optimizer.minimize(obj_func)

            # initialize parameters
            place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(exe,
                                           args.load_dir,
                                           main_program=main_program)
            else:
                exe.run(startup_prog)
                embedding_para = fluid.global_scope().find_var(
                    'embedding_para').get_tensor()
                embedding_para.set(vocab.embeddings.astype(np.float32), place)

            # prepare data
            feed_list = [
                main_program.global_block().var(var_name)
                for var_name in feed_order
            ]
            feeder = fluid.DataFeeder(feed_list, place)

            logger.info('Training the model...')
            parallel_executor = fluid.ParallelExecutor(
                main_program=main_program,
                use_cuda=bool(args.use_gpu),
                loss_name=avg_cost.name)
            print_para(main_program, parallel_executor, logger, args)

            for pass_id in range(1, args.pass_num + 1):
                pass_start_time = time.time()
                pad_id = vocab.get_id(vocab.pad_token)
                if args.enable_ce:
                    train_reader = lambda: brc_data.gen_mini_batches(
                        'train', args.batch_size, pad_id, shuffle=False)
                else:
                    train_reader = lambda: brc_data.gen_mini_batches(
                        'train', args.batch_size, pad_id, shuffle=True)
                train_reader = read_multiple(train_reader, dev_count)
                log_every_n_batch, n_batch_loss = args.log_interval, 0
                total_num, total_loss = 0, 0
                for batch_id, batch_list in enumerate(train_reader(), 1):
                    feed_data = batch_reader(batch_list, args)
                    fetch_outs = parallel_executor.run(
                        feed=list(feeder.feed_parallel(feed_data, dev_count)),
                        fetch_list=[obj_func.name],
                        return_numpy=False)
                    cost_train = np.array(fetch_outs[0]).mean()
                    total_num += args.batch_size * dev_count
                    n_batch_loss += cost_train
                    total_loss += cost_train * args.batch_size * dev_count

                    if args.enable_ce and batch_id >= 100:
                        break
                    if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
                        print_para(main_program, parallel_executor, logger,
                                   args)
                        logger.info(
                            'Average loss from batch {} to {} is {}'.format(
                                batch_id - log_every_n_batch + 1, batch_id,
                                "%.10f" % (n_batch_loss / log_every_n_batch)))
                        n_batch_loss = 0
                    if args.dev_interval > 0 and batch_id % args.dev_interval == 0:
                        if brc_data.dev_set is not None:
                            eval_loss, bleu_rouge = validation(
                                inference_program, avg_cost, s_probs, e_probs,
                                match, feed_order, place, dev_count, vocab,
                                brc_data, logger, args)
                            logger.info('Dev eval loss {}'.format(eval_loss))
                            logger.info(
                                'Dev eval result: {}'.format(bleu_rouge))
                pass_end_time = time.time()
                time_consumed = pass_end_time - pass_start_time
                logger.info('epoch: {0}, epoch_time_cost: {1:.2f}'.format(
                    pass_id, time_consumed))
                logger.info(
                    'Evaluating the model after epoch {}'.format(pass_id))
                if brc_data.dev_set is not None:
                    eval_loss, bleu_rouge = validation(inference_program,
                                                       avg_cost, s_probs,
                                                       e_probs, match,
                                                       feed_order, place,
                                                       dev_count, vocab,
                                                       brc_data, logger, args)
                    logger.info('Dev eval loss {}'.format(eval_loss))
                    logger.info('Dev eval result: {}'.format(bleu_rouge))
                else:
                    logger.warning(
                        'No dev set is loaded for evaluation in the dataset!')

                logger.info('Average train loss for epoch {} is {}'.format(
                    pass_id, "%.10f" % (1.0 * total_loss / total_num)))

                if pass_id % args.save_interval == 0:
                    model_path = os.path.join(args.save_dir, str(pass_id))
                    if not os.path.isdir(model_path):
                        os.makedirs(model_path)

                    fluid.io.save_persistables(executor=exe,
                                               dirname=model_path,
                                               main_program=main_program)
                if args.enable_ce:  # For CE
                    print("kpis\ttrain_cost_card%d\t%f" %
                          (dev_count, total_loss / total_num))
                    if brc_data.dev_set is not None:
                        print("kpis\ttest_cost_card%d\t%f" %
                              (dev_count, eval_loss))
                    print("kpis\ttrain_duration_card%d\t%f" %
                          (dev_count, time_consumed))
Exemple #16
0
def train(args):
    """
    checks data, creates the directories, prepare the vocabulary and embeddings
    """
    logger = logging.getLogger("brc")
    logger.info('Checking the data files...')
    for data_path in args.train_files + args.dev_files + args.test_files:
        assert os.path.exists(data_path), '{} file does not exist.'.format(
            data_path)
    logger.info('Preparing the directories...')
    for dir_path in [args.vocab_dir, args.model_dir, args.result_dir]:
        if not os.path.exists(dir_path):
            os.makedirs(dir_path)

    logger.info('Building vocabulary...')

    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          args.max_train_sample_num, args.train_files)

    vocab = Vocab(lower=True)

    for word in brc_data.word_iter('train'):
        vocab.add(word)

    unfiltered_vocab_size = vocab.size()
    vocab.filter_tokens_by_cnt(min_cnt=2)

    filtered_num = unfiltered_vocab_size - vocab.size()
    logger.info('After filter {} tokens, the final vocab size is {}'.format(
        filtered_num, vocab.size()))

    logger.info('Assigning embeddings...')
    vocab.load_pretrained_embeddings(args.word_embedding_path)

    #vocab.randomly_init_embeddings(300)
    #vocab1.randomly_init_embeddings(300)
    logger.info('Saving vocab...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'wb') as fout:
        pickle.dump(vocab, fout)

    rc_model = S_netModel(vocab, args)
    logger.info('Training the model...')
    #rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo +'sys')
    #if args.train_as:
    #    rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo + 'syst')
    rc_model.train(brc_data,
                   args.epochs,
                   args.batch_size,
                   save_dir=args.model_dir,
                   save_prefix=args.algo,
                   dropout_keep_prob=args.dropout_keep_prob)
    logger.info('Done with model training!')

    logger.info('evaluate the trained model!')
    test_batches = brc_data.gen_mini_batches('test',
                                             args.batch_size,
                                             pad_id=vocab.get_id(
                                                 vocab.pad_token),
                                             shuffle=False)
    rc_model.evaluate(test_batches,
                      result_dir=args.result_dir,
                      result_prefix='test.predicted')
    logger.info('Done with model evaluating !')