test_imgs_with_guide += [(None, None, os.path.join(baseDirLabel, name, label_id, '00000.png'), os.path.join(baseDirImg, name, '00001.jpg'))] test_imgs_with_guide += [ (None, None, os.path.join(resDirLabel, name, label_id, prev_frame[:-4] + '.png'), os.path.join(baseDirImg, name, frame)) for prev_frame, frame in zip(test_frames[1:-1], test_frames[2:]) ] # Define Dataset dataset = Dataset(train_imgs_with_guide, test_imgs_with_guide, args, data_aug=True) with tf.Graph().as_default(): with tf.device('/gpu:' + str(args.gpu_id)): if not args.only_testing: max_training_iters = args.training_iters save_step = args.save_iters display_step = args.display_iters logs_path = os.path.join(args.model_save_path, name, label_id) global_step = tf.Variable(0, name='global_step', trainable=False) osmn.train_finetune( dataset,
os.path.join(baseDirLabel, name, test_frames[0][:-4] + '.png'), None, None)] test_imgs_with_guide += [(None, None, os.path.join(baseDirLabel, name, test_frames[0][:-4] + '.png'), os.path.join(baseDirImg, name, test_frames[1]))] test_imgs_with_guide += [ (None, None, os.path.join(resDirLabel, name, prev_frame[:-4] + '.png'), os.path.join(baseDirImg, name, frame)) for prev_frame, frame in zip(test_frames[1:-1], test_frames[2:]) ] # Define Dataset dataset = Dataset([], test_imgs_with_guide, args) ## default config config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.gpu_options.per_process_gpu_memory_fraction = 0.9 # Test the network with tf.Graph().as_default(): with tf.device('/gpu:' + str(args.gpu_id)): checkpoint_path = args.whole_model_path osmn.test(dataset, args, checkpoint_path, args.result_path,