else: raise ValueError('All logs must share the same dataset to be compared') else: plot_dataset = config.dataset[:5] # Plot the training loss and accuracy compare_trainings(logs, logs_names) # Plot the validation if plot_dataset.startswith('Shape'): compare_convergences_multisegment(logs, logs_names) elif plot_dataset.startswith('S3DIS'): dataset = S3DISDataset() compare_convergences_segment(dataset, logs, logs_names) elif plot_dataset.startswith('Model'): dataset = ModelNet40Dataset() compare_convergences_classif(dataset, logs, logs_names) elif plot_dataset.startswith('Scann'): dataset = ScannetDataset() compare_convergences_segment(dataset, logs, logs_names) elif plot_dataset.startswith('Seman'): dataset = Semantic3DDataset() compare_convergences_segment(dataset, logs, logs_names) elif plot_dataset.startswith('NPM3D'): dataset = NPM3DDataset() compare_convergences_segment(dataset, logs, logs_names) else: raise ValueError('Unsupported dataset : ' + plot_dataset)