Exemple #1
0
def test_net_base(sess, net, imdb, roidb, weights_filename, visualize=False, mode='all'):
    np.random.seed(cfg.RNG_SEED)
    """Test a Fast R-CNN network on an image database."""
    num_images = len(roidb)
    output_dir = get_output_dir(imdb, weights_filename)
    output_dir_image = os.path.join(output_dir, 'images')
    if visualize and not os.path.exists(output_dir_image):
        os.makedirs(output_dir_image)
    all_scores = [[] for _ in range(num_images)]

    # timers
    _t = {'im_detect': Timer(), 'evaluate': Timer()}

    if mode == 'all':
        eval_modes = ['pred_cls', 'sg_cls', 'sg_det']
    else:
        eval_modes = [mode]
    print('EVAL MODES = ')
    print(eval_modes)

    evaluators = {}
    for m in eval_modes:
        evaluators[m] = SceneGraphEvaluator(imdb, mode=m)

    for i in range(num_images):
        _t['score'].tic()
        all_scores[i], blobs = im_detect(sess, imdb, net, [roidb[i]])
        _t['score'].toc()

        print('score: {:d}/{:d} {:.3f}s' \
              .format(i + 1, num_images, _t['score'].average_time))

        if visualize and i % 10 == 0:
            basename = os.path.basename(imdb.image_path_at(i)).split('.')[0]
            im_vis, wrong = draw_predicted_boxes_test(blobs['data'], all_scores[i], blobs['gt_boxes'])
            if wrong:
                out_image = os.path.join(output_dir_image, basename + '.jpg')
                print(out_image)
                cv2.imwrite(out_image, im_vis)

    res_file = os.path.join(output_dir, 'results.pkl')
    with open(res_file, 'wb') as f:
        pickle.dump(all_scores, f, pickle.HIGHEST_PROTOCOL)

    print('Evaluating detections')
    mcls_sc, mcls_ac, mcls_ap, mins_sc, mins_ac, mins_ap = imdb.evaluate(all_scores, output_dir)
    eval_file = os.path.join(output_dir, 'results.txt')
    with open(eval_file, 'w') as f:
        f.write('{:.3f} {:.3f} {:.3f} {:.3f}'.format(mins_ap, mins_ac, mcls_ap, mcls_ac))
Exemple #2
0
def test_net(net_name, weight_name, imdb, mode, max_per_image=100):
    sess = tf.Session()

    # set up testing mode
    rois = tf.placeholder(dtype=tf.float32, shape=[None, 5], name='rois')
    rel_rois = tf.placeholder(dtype=tf.float32, shape=[None, 5], name='rel_rois')
    ims = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3], name='ims')
    relations = tf.placeholder(dtype=tf.int32, shape=[None, 2], name='relations')
    inputs = {'rois': rois,
              'rel_rois': rel_rois,
              'ims': ims,
              'relations': relations,
              'num_roi': tf.placeholder(dtype=tf.int32, shape=[]),
              'num_rel': tf.placeholder(dtype=tf.int32, shape=[]),
              'num_classes': imdb.num_classes,
              'num_predicates': imdb.num_predicates,
              'rel_mask_inds': tf.placeholder(dtype=tf.int32, shape=[None]),
              'rel_segment_inds': tf.placeholder(dtype=tf.int32, shape=[None]),
              'rel_pair_mask_inds': tf.placeholder(dtype=tf.int32, shape=[None, 2]),
              'rel_pair_segment_inds': tf.placeholder(dtype=tf.int32, shape=[None]),
              'n_iter': cfg.TEST.INFERENCE_ITER}


    net = get_network(net_name)(inputs)
    net.setup()
    print ('Loading model weights from {:s}').format(weight_name)
    saver = tf.train.Saver()
    saver.restore(sess, weight_name)

    roidb = imdb.roidb
    if cfg.TEST.USE_RPN_DB:
        imdb.add_rpn_rois(roidb, make_copy=False)
    prepare_roidb(roidb)

    num_images = len(imdb.image_index)

    # timers
    _t = {'im_detect' : Timer(), 'evaluate' : Timer()}

    if mode == 'all':
        eval_modes = ['pred_cls', 'sg_cls', 'sg_det']
    else:
        eval_modes = [mode]
    multi_iter = [net.n_iter - 1] if net.iterable else [0]
    print('Graph Inference Iteration ='),
    print(multi_iter)
    print('EVAL MODES ='),
    print(eval_modes)

    # initialize evaluator for each task
    evaluators = {}
    for m in eval_modes:
        evaluators[m] = {}
        for it in multi_iter:
            evaluators[m][it] = SceneGraphEvaluator(imdb, mode=m)

    for im_i in xrange(num_images):

        im = imdb.im_getter(im_i)

        for mode in eval_modes:
            bbox_reg = True
            if mode == 'pred_cls' or mode == 'sg_cls':
                # use ground truth object locations
                bbox_reg = False
                box_proposals = gt_rois(roidb[im_i])
            else:
                # use RPN-proposed object locations
                box_proposals, roi_scores = non_gt_rois(roidb[im_i])
                roi_scores = np.expand_dims(roi_scores, axis=1)
                nms_keep = cpu_nms(np.hstack((box_proposals, roi_scores)).astype(np.float32),
                            cfg.TEST.PROPOSAL_NMS)
                nms_keep = np.array(nms_keep)
                num_proposal = min(cfg.TEST.NUM_PROPOSALS, nms_keep.shape[0])
                keep = nms_keep[:num_proposal]
                box_proposals = box_proposals[keep, :]


            if box_proposals.size == 0 or box_proposals.shape[0] < 2:
                # continue if no graph
                continue

            _t['im_detect'].tic()
            out_dict = im_detect(sess, net, inputs, im, box_proposals,
                                 bbox_reg, multi_iter)
            _t['im_detect'].toc()
            _t['evaluate'].tic()
            for iter_n in multi_iter:
                sg_entry = out_dict[iter_n]
                evaluators[mode][iter_n].evaluate_scene_graph_entry(sg_entry, im_i, iou_thresh=0.5)
            _t['evaluate'].toc()

        print 'im_detect: {:d}/{:d} {:.3f}s {:.3f}s' \
              .format(im_i + 1, num_images, _t['im_detect'].average_time,
                      _t['evaluate'].average_time)

    # print out evaluation results 打印结果
    for mode in eval_modes:
        for iter_n in multi_iter:
            evaluators[mode][iter_n].print_stats()
Exemple #3
0
def eval_net(score_file, imdb, mode, write_rel_f, max_per_image=100):
    dic = json.load(open("/ssd_disk/gay/scenegraph/scannet-SGG-dicts.json"))
    preds_ok = np.zeros((len(dic['predicate_to_idx']) + 1, 1))
    preds_nok = np.zeros((len(dic['predicate_to_idx']) + 1, 1))
    sg_entries = pickle.load(open(score_file))
    # set up testing mode
    roidb = imdb.roidb
    if cfg.TEST.USE_RPN_DB:
        imdb.add_rpn_rois(roidb, make_copy=False)
    prepare_roidb(roidb)

    num_images = len(imdb.image_index)

    # timers
    _t = {'im_detect': Timer(), 'evaluate': Timer()}

    if mode == 'all':
        eval_modes = ['pred_cls', 'sg_cls', 'sg_det']
    else:
        eval_modes = [mode]
    multi_iter = [1]  #FIXME,. maybe try 2
    print('Graph Inference Iteration ='),
    print(multi_iter)
    print('EVAL MODES ='),
    print(eval_modes)

    # initialize evaluator for each task
    evaluators = {}
    for m in eval_modes:
        evaluators[m] = {}
        for it in multi_iter:
            evaluators[m][it] = SceneGraphEvaluator(imdb, mode=m)
    sg_i = -1
    preds = np.zeros((0, 1))
    f = open(write_rel_f, 'w')
    """
    #pickle.dump(roidb,open('gt.pc','wb'))
    my_roidb = []
    for i in range(0,num_images):
      gt_en = {}
      gt_en['gt_classes'] = roidb[i]['gt_classes']
      gt_en['boxes'] = roidb[i]['boxes']
      gt_en['gt_relations'] = roidb[i]['gt_relations']
      my_roidb.append(gt_en)
    pickle.dump(my_roidb,open('gt.pc','wb'))
    import sys; sys.exit()
    """
    for im_i in xrange(0, num_images, 1):  #xrange(num_images):
        im_i_roidb_full = imdb._image_index[im_i]
        seq_name = imdb.im2seq[im_i_roidb_full]
        im_path = imdb.impaths[imdb.roidb_idx_to_imdbidx[im_i_roidb_full]]
        fname = im_path.split('/')[-1].replace('.color.jpg', '')
        first_box_idx = imdb.im_to_first_box[im_i]
        im = imdb.im_getter(im_i)
        sg_i += 1
        sg_entry = sg_entries[sg_i]
        scores_rel = sg_entry['relations']
        gt_rel = roidb[im_i]['gt_relations']
        gt_rela = np.hstack([np.ones((gt_rel.shape[0], 1)) * im_i, gt_rel])
        pred_rel_vec = np.zeros((gt_rel.shape[0], 1))
        for i in range(gt_rel.shape[0]):
            o1 = gt_rela[i, 1]
            o2 = gt_rela[i, 2]
            o1_oid = imdb.roidb_to_scannet_oid[first_box_idx +
                                               o1][0]  # to check later
            o2_oid = imdb.roidb_to_scannet_oid[first_box_idx + o2][0]
            predicate = gt_rela[i, 3]
            if scores_rel[int(o1), int(o2),
                          int(predicate)] > scores_rel[int(o2),
                                                       int(o1),
                                                       int(predicate)]:
                pred_rel_vec[i] = 1
                preds_ok[int(predicate)] += 1
                f.write(' '.join(
                    (seq_name, fname, str(o1_oid), str(o2_oid),
                     imdb.info['idx_to_predicate'][str(int(predicate))],
                     '1\n')))
            else:
                preds_nok[int(predicate)] += 1
                pred_rel_vec[i] = 0
                f.write(' '.join(
                    (seq_name, fname, str(o1_oid), str(o2_oid),
                     imdb.info['idx_to_predicate'][str(int(predicate))],
                     '0\n')))
        preds = np.vstack([preds, pred_rel_vec])
        for mode in eval_modes:
            bbox_reg = True
            if mode == 'pred_cls' or mode == 'sg_cls':
                # use ground truth object locations
                bbox_reg = False
                box_proposals = gt_rois(roidb[im_i])
            else:
                # use RPN-proposed object locations
                box_proposals, roi_scores = non_gt_rois(roidb[im_i])
                roi_scores = np.expand_dims(roi_scores, axis=1)
                nms_keep = cpu_nms(
                    np.hstack((box_proposals, roi_scores)).astype(np.float32),
                    cfg.TEST.PROPOSAL_NMS)
                nms_keep = np.array(nms_keep)
                num_proposal = min(cfg.TEST.NUM_PROPOSALS, nms_keep.shape[0])
                keep = nms_keep[:num_proposal]
                box_proposals = box_proposals[keep, :]
            if box_proposals.size == 0 or box_proposals.shape[0] < 2:
                # continue if no graph
                continue
            _t['im_detect'].tic()
            quadric_rois = np.vstack(
                [roidb[im_i]['quadric_rois'], roidb[im_i]['quadric_rois']]
            )  # this duplication, I don't know why, but the boxes are duplicated, so I did the same, maybe it is to evaluate different aspect
            quadric_rois = np.hstack(
                [np.zeros((quadric_rois.shape[0], 1)), quadric_rois]
            )  #this is because in the training phase, the image number is appended
            #out_dict = im_detect(sess, net, inputs, im, box_proposals, bbox_reg, multi_iter, quadric_rois)

            _t['im_detect'].toc()
            _t['evaluate'].tic()
            for iter_n in multi_iter:
                evaluators[mode][iter_n].evaluate_scene_graph_entry(
                    sg_entry, im_i, iou_thresh=0.5)
            _t['evaluate'].toc()

        print 'im_detect: {:d}/{:d} {:.3f}s {:.3f}s' \
              .format(im_i + 1, num_images, _t['im_detect'].average_time,
                      _t['evaluate'].average_time)

    # print out evaluation results
    for mode in eval_modes:
        for iter_n in multi_iter:
            evaluators[mode][iter_n].print_stats()
    print 'direct accuracy of the predicates', np.mean(preds)
    print preds_ok
    print preds_nok
    print preds_ok / (preds_ok + preds_nok)
    f.close()