Exemple #1
0
    def train_coarse(self, training_data, validation_data, fine2coarse):
        x_train, y_train = training_data
        yc_train = tf.linalg.matmul(y_train, fine2coarse)

        x_val, y_val = validation_data
        yc_val = tf.linalg.matmul(y_val, fine2coarse)

        del y_train, y_val

        p = self.training_params
        val_thresh = p["validation_loss_threshold"]

        logger.debug(f"Creating coarse classifier with shared layers")
        self.cc, _ = self.build_cc_fc(verbose=False)
        self.fc = None
        optim = tf.keras.optimizers.SGD(lr=p['lr_coarse'], nesterov=True, momentum=0.5)

        loc = self.save_cc_model()

        logger.info('Start Coarse Classification Training')

        index = p['initial_epoch']

        prev_val_loss = float('inf')
        counts_patience = 0
        patience = p["patience"]
        while index < p['stop']:
            tf.keras.backend.clear_session()
            self.load_cc_model(loc)

            cc = tf.keras.Model(inputs=self.cc.inputs, outputs=self.cc.outputs[1])
            cc.compile(optimizer=optim,
                       loss='categorical_crossentropy',
                       metrics=['accuracy'])

            x_train, yc_train, _ = shuffle_data((x_train, yc_train))
            cc_fit = cc.fit(x_train, yc_train,
                            batch_size=p['batch_size'],
                            initial_epoch=index,
                            epochs=index + p["step"],
                            validation_data=(x_val, yc_val),
                            callbacks=[self.tbCallback_coarse])
            val_loss = cc_fit.history["val_loss"][-1]
            loc = self.save_cc_model()
            if prev_val_loss - val_loss < val_thresh:
                counts_patience += 1
                logger.info(f"Counts to early stopping: {counts_patience}/{p['patience']}")
                if counts_patience >= patience:
                    break
                elif counts_patience % p["reduce_lr_after_patience_counts"] == 0:
                    new_val = optim.learning_rate * p["lr_reduction_factor"]
                    logger.info(f"LR is now: {new_val.numpy()}")
                    optim.learning_rate.assign(new_val)
                    self.load_best_cc_model()
                    loc = self.save_cc_model()
            else:
                counts_patience = 0
                prev_val_loss = val_loss
                self.save_best_cc_model()
            index += p["step"]
Exemple #2
0
def main(args):
    logs_file = get_logs_file()
    logs_directory = os.path.dirname(logs_file)

    logging.basicConfig(level=logging.DEBUG,
                        filename=logs_file,
                        filemode='w')
    ch = logging.StreamHandler()
    ch.setLevel(args.log_level)
    ch.setFormatter(logging.Formatter("%(levelname)s:%(name)s:%(message)s"))
    logger = logging.getLogger('')
    logger.addHandler(ch)

    logger.debug(f'Logs file: {logs_file}')

    model_directory = get_model_directory()
    logger.debug(f'Models directory: {model_directory}')

    data_directory = get_data_directory(args)
    logger.debug(f'Data directory: {data_directory}')

    results_file = get_results_file()
    logger.debug(f'Results file: {results_file}')

    logger.info('Getting data')
    data = get_data(args.dataset, data_directory)
    training_data = data[0]
    testing_data = data[1]
    fine2coarse = data[2]
    n_fine_categories = data[3]
    n_coarse_categories = data[4]

    logger.info('Building model')
    net = models.HDCNN(n_fine_categories,
                       n_coarse_categories, logs_directory,
                       model_directory, args)

    if args.load_model is not None:
        logger.info(f'Loading weights from {args.load_model}')
        net.load_models(args.load_model)

    if args.train:
        logger.info('Entering training')
        trdx, trdy, _ = shuffle_data(training_data)
        training_data = trdx, trdy
        training_data, validation_data = train_test_split(training_data)
        net.train_shared_layers(training_data, validation_data)
        net.save_all_models(model_directory)
        net.sync_parameters()
        net.train_coarse_classifier(
            training_data, validation_data, fine2coarse)
        net.save_all_models(model_directory)
        net.train_fine_classifiers(
            training_data, validation_data, fine2coarse)
        net.save_all_models(model_directory)
    if args.test:
        logger.info('Entering testing')
        net.predict(testing_data, fine2coarse, args.results_file)
Exemple #3
0
    def train(self, training_data, validation_data):
        x_train, y_train = training_data
        x_val, y_val = validation_data

        p = self.training_params
        val_thresh = p["validation_loss_threshold"]

        logger.info('Start Full Classification training')

        index = p['initial_epoch']

        tf.keras.backend.clear_session()
        self.full_model = self.build_model(verbose=False)
        optim = tf.keras.optimizers.SGD(lr=p['lr'],
                                        nesterov=True,
                                        momentum=0.5)
        self.full_model.compile(optimizer=optim,
                                loss='categorical_crossentropy',
                                metrics=['accuracy'])
        loc = self.save_full_model()
        tf.keras.backend.clear_session()

        prev_val_loss = float('inf')
        counts_patience = 0
        patience = p["patience"]
        while index < p['stop']:
            tf.keras.backend.clear_session()
            self.load_full_model(loc)
            x_train, y_train, _ = shuffle_data((x_train, y_train))
            full_fit = self.full_model.fit(x_train,
                                           y_train,
                                           batch_size=p['batch_size'],
                                           initial_epoch=index,
                                           epochs=index + p["step"],
                                           validation_data=(x_val, y_val),
                                           callbacks=[self.tbCallback_full])
            val_loss = full_fit.history["val_loss"][-1]
            loc = self.save_full_model()
            if prev_val_loss - val_loss < val_thresh:
                counts_patience += 1
                logger.info(
                    f"Counts to early stopping: {counts_patience}/{p['patience']}"
                )
                if counts_patience >= patience:
                    break
                elif counts_patience % p[
                        "reduce_lr_after_patience_counts"] == 0:
                    new_val = optim.learning_rate * p["lr_reduction_factor"]
                    logger.info(f"LR is now: {new_val.numpy()}")
                    optim.learning_rate.assign(new_val)
                    self.load_best_full_model()
                    self.save_full_model()
            else:
                counts_patience = 0
                prev_val_loss = val_loss
                self.save_best_full_model()
            index += p["step"]
Exemple #4
0
def main(args):
    logs_file = get_logs_file(args.name)
    logs_directory = os.path.dirname(logs_file)

    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
        filename=logs_file,
        filemode='w')
    ch = logging.StreamHandler()
    ch.setLevel(args.log_level)
    ch.setFormatter(
        logging.Formatter(
            "%(asctime)s - %(name)s - %(levelname)s - %(message)s"))
    logger = logging.getLogger('')
    logger.addHandler(ch)

    logger.debug(f'Logs file: {logs_file}')

    model_directory = get_model_directory(args)
    logger.debug(f'Models directory: {model_directory}')

    data_directory = get_data_directory(args)
    logger.debug(f'Data directory: {data_directory}')

    results_file = get_results_file(args)
    logger.debug(f'Results file: {results_file}')

    logger.info('Getting data')
    data = get_data(args.dataset, data_directory)
    training_data = data[0]
    testing_data = data[1]
    validation_data = data[2]
    fine2coarse = data[3]
    n_fine_categories = data[4]
    n_coarse_categories = data[5]
    input_shape = training_data[0][0].shape

    logger.info('Building model')
    net = models.VanillaResNet(n_fine_categories=n_fine_categories,
                               n_coarse_categories=n_coarse_categories,
                               input_shape=input_shape,
                               logs_directory=logs_directory,
                               model_directory=model_directory,
                               args=args)

    if args.train:
        logger.info('Entering training')
        trdx, trdy, _ = shuffle_data(training_data)
        training_data = trdx, trdy
        net.train(training_data, validation_data)
    if args.test:
        logger.info('Entering testing')
        net.predict_fine(testing_data, results_file,
                         fine2coarse)  # args.results)
Exemple #5
0
def get_data(dataset, data_directory):
    if dataset == 'cifar100':
        logging.info('Getting CIFAR-100 dataset')
        tr, te, fine2coarse, n_fine, n_coarse = datasets.get_cifar100(
            data_directory)
        tr_x, tr_y, _ = shuffle_data(tr, random_state=0)
        tr = tr_x, tr_y
        tr, val = train_test_split(tr)
        logging.debug(
            f'Training set: x_dims={tr[0].shape}, y_dims={tr[1].shape}')
        logging.debug(
            f'Testing set: x_dims={te[0].shape}, y_dims={te[1].shape}')
    return tr, te, val, fine2coarse, n_fine, n_coarse
Exemple #6
0
    def train(self, training_data, validation_data):
        x_val, y_val = validation_data

        p = self.training_params

        optim = tf.keras.optimizers.SGD(lr=p['lr'])

        index = p['initial_epoch']

        prev_val_loss = float('inf')
        counts_patience = 0

        self.save_model(self.model_directory + "/vanilla_tmp.h5", self.full_classifier)

        while index < p['stop']:
            tf.keras.backend.clear_session()
            self.full_classifier = self.load_model(self.model_directory + "/vanilla_tmp.h5")

            self.full_classifier.compile(optimizer=optim,
                                         loss='categorical_crossentropy',
                                         metrics=['accuracy'])

            # logger.info('Training coarse stage')
            x_train, y_train, _ = shuffle_data(training_data)
            fc = self.full_classifier.fit(x_train, y_train,
                                          batch_size=p['batch_size'],
                                          initial_epoch=index,
                                          epochs=index + p['step'],
                                          validation_data=(x_val, y_val),
                                          callbacks=[self.tbCallback])
            val_loss = fc.history['val_loss'][0]

            self.save_model(self.model_directory + "/vanilla_tmp.h5", self.full_classifier)

            if prev_val_loss - val_loss < p['val_thresh']:
                counts_patience += 1
                logger.info(f"Counts to early stopping: {counts_patience}/{p['patience']}")
                if counts_patience >= p['patience']:
                    break
                elif counts_patience % p["reduce_lr_after_patience_counts"] == 0:
                    self.full_classifier = self.load_model(self.model_directory + "/vanilla.h5")
                    new_val = optim.learning_rate * p["lr_reduction_factor"]
                    logger.info(f"LR is now: {new_val.numpy()}")
                    optim.learning_rate.assign(new_val)
            else:
                counts_patience = 0
                prev_val_loss = val_loss
                self.save_model(self.model_directory + "/vanilla.h5", self.full_classifier)

            index += p['step']
Exemple #7
0
    def train_both(self, training_data, validation_data, fine2coarse):
        x_train, y_train = training_data
        x_val, y_val = validation_data
        yc_train = tf.linalg.matmul(y_train, fine2coarse)
        yc_val = tf.linalg.matmul(y_val, fine2coarse)

        p = self.training_params
        val_thresh = p["validation_loss_threshold"]

        logger.info('Start Full Classification training')

        index = p['initial_epoch']

        tf.keras.backend.clear_session()
        self.load_best_cc_model()
        self.load_best_fc_model()
        loc_cc = self.save_cc_model()
        loc_fc = self.save_fc_model()

        tf.keras.backend.clear_session()

        optim = tf.keras.optimizers.SGD(lr=p['lr_full'],
                                        nesterov=True,
                                        momentum=0.5)

        prev_val_loss = float('inf')
        counts_patience = 0
        patience = p["patience"]
        while index < p['stop']:
            tf.keras.backend.clear_session()
            self.load_cc_model(loc_cc)
            self.load_fc_model(loc_fc)
            self.build_full_model()
            for l in self.cc.layers:
                l.trainable = True
            for l in self.fc.layers:
                l.trainable = True
            self.full_model.compile(optimizer=optim,
                                    loss='categorical_crossentropy',
                                    metrics=['accuracy'])
            x_train, y_train, inds = shuffle_data((x_train, y_train))
            yc_train = tf.gather(yc_train, inds)
            full_fit = self.full_model.fit(x_train, [y_train, yc_train],
                                           batch_size=p['batch_size'],
                                           initial_epoch=index,
                                           epochs=index + p["step_full"],
                                           validation_data=(x_val,
                                                            [y_val, yc_val]),
                                           callbacks=[self.tbCallback_full])
            val_loss = full_fit.history["val_loss"][-1]
            loc_cc = self.save_cc_model()
            loc_fc = self.save_fc_model()
            if prev_val_loss - val_loss < val_thresh:
                counts_patience += 1
                logger.info(
                    f"Counts to early stopping: {counts_patience}/{p['patience']}"
                )
                if counts_patience >= patience:
                    break
                elif counts_patience % p[
                        "reduce_lr_after_patience_counts"] == 0:
                    new_val = optim.learning_rate * p["lr_reduction_factor"]
                    logger.info(f"LR is now: {new_val.numpy()}")
                    optim.learning_rate.assign(new_val)
                    self.load_best_fc_both_model()
                    self.save_fc_model()
                    self.load_best_cc_both_model()
                    self.save_cc_model()
            else:
                counts_patience = 0
                prev_val_loss = val_loss
                self.save_best_cc_both_model()
                self.save_best_fc_both_model()
            index += p["step_full"]