def get_training_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'ucf101', 'hmdb51', 'something'] if opt.dataset == 'kinetics': training_data = Kinetics(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'ucf101': training_data = UCF101(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'hmdb51': training_data = HMDB51(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'something': training_data = Something(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) return training_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'ucf101', 'hmdb51', 'something'] if opt.dataset == 'kinetics': validation_data = Kinetics(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform) elif opt.dataset == 'ucf101': validation_data = UCF101(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform) elif opt.dataset == 'hmdb51': validation_data = HMDB51(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform) elif opt.dataset == 'something': validation_data = Something(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform) return validation_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform, score_sens_mode=False): assert opt.dataset in [ 'kinetics', 'activitynet', 'ucf101', 'hmdb51', 'something' ] if opt.dataset == 'kinetics': validation_data = Kinetics(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'activitynet': validation_data = ActivityNet(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': validation_data = UCF101(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration, score_sens_mode=score_sens_mode) elif opt.dataset == 'hmdb51': validation_data = HMDB51(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'something': validation_data = Something(opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration, score_sens_mode=score_sens_mode) return validation_data
def get_training_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'activitynet', 'ucf101', 'hmdb51','something','fire'] if opt.dataset == 'kinetics': training_data = Kinetics( opt.video_path+"/train_256", opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'activitynet': training_data = ActivityNet( opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'ucf101': opt.annotation_path = opt.annotation_path + "/train_rgb_ucf101.txt" training_data = UCF101( opt.video_path, opt.annotation_path, num_segments = opt.num_segments, modality = opt.modality, transform = spatial_transform) elif opt.dataset == 'hmdb51': opt.annotation_path = opt.annotation_path + "/train_rgb_hmdb51.txt" training_data = HMDB51( opt.video_path, opt.annotation_path, num_segments = opt.num_segments, modality = opt.modality, transform = spatial_transform) elif opt.dataset == 'something': training_data = Something( opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'fire': opt.annotation_path = opt.annotation_path + "/train_fire.txt" training_data = FIRE( opt.video_path, opt.annotation_path, num_segments = opt.num_segments, modality = opt.modality, transform = spatial_transform) return training_data
def get_test_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'ucf101', 'hmdb51', 'something'] assert opt.test_subset in ['val', 'test'] if opt.test_subset == 'val': subset = 'validation' elif opt.test_subset == 'test': subset = 'testing' if opt.dataset == 'kinetics': test_data = Kinetics(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration, n_test_clips_for_each_video=opt.n_test_clips, n_test_crops_for_each_video=opt.n_test_crops) elif opt.dataset == 'ucf101': test_data = UCF101(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration, n_test_clips_for_each_video=opt.n_test_clips, n_test_crops_for_each_video=opt.n_test_crops) elif opt.dataset == 'hmdb51': test_data = HMDB51(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration, n_test_clips_for_each_video=opt.n_test_clips, n_test_crops_for_each_video=opt.n_test_crops) elif opt.dataset == 'something': test_data = Something(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration, n_test_clips_for_each_video=opt.n_test_clips, n_test_crops_for_each_video=opt.n_test_crops) return test_data
def get_training_set(opt, spatial_transform, temporal_transform, target_transform, score_sens_mode=False): assert opt.dataset in [ 'kinetics', 'activitynet', 'ucf101', 'hmdb51', 'something' ] if opt.dataset == 'kinetics': training_data = Kinetics(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'activitynet': training_data = ActivityNet(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'ucf101': training_data = UCF101(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, score_sens_mode=score_sens_mode) elif opt.dataset == 'hmdb51': training_data = HMDB51(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform) elif opt.dataset == 'something': training_data = Something(opt.video_path, opt.annotation_path, 'training', spatial_transform=spatial_transform, temporal_transform=temporal_transform, target_transform=target_transform, score_sens_mode=score_sens_mode) return training_data
def get_validation_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'activitynet', 'ucf101', 'hmdb51','something','fire'] if opt.dataset == 'kinetics': validation_data = Kinetics( opt.video_path+"/val_256", opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'activitynet': validation_data = ActivityNet( opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': opt.annotation_path = opt.annotation_path.replace("train","test") #opt.annotation_path = opt.annotation_path + "/test_rgb_ucf101.txt" validation_data = UCF101( opt.video_path, opt.annotation_path, num_segments = opt.num_segments, modality = opt.modality, transform = spatial_transform, test_mode = True) elif opt.dataset == 'hmdb51': opt.annotation_path = opt.annotation_path.replace("train","val") validation_data = HMDB51( opt.video_path, opt.annotation_path, num_segments = opt.num_segments, modality = opt.modality, transform = spatial_transform) elif opt.dataset == 'fire': opt.annotation_path = opt.annotation_path.replace("train","test") validation_data = FIRE( opt.video_path, opt.annotation_path, num_segments = opt.num_segments, modality = opt.modality, transform = spatial_transform) elif opt.dataset == 'something': validation_data = Something( opt.video_path, opt.annotation_path, 'validation', opt.n_val_samples, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) return validation_data
def get_test_set(opt, spatial_transform, temporal_transform, target_transform): assert opt.dataset in ['kinetics', 'activitynet', 'ucf101', 'hmdb51','something','fire'] assert opt.test_subset in ['val', 'test'] if opt.test_subset == 'val': subset = 'validation' elif opt.test_subset == 'test': subset = 'testing' if opt.dataset == 'kinetics': test_data = Kinetics( opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration, sample_stride=opt.sample_stride) elif opt.dataset == 'activitynet': test_data = ActivityNet( opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': opt.annotation_path = opt.annotation_path + "/test_rgb_ucf101.txt" test_data = UCF101( opt.video_path, opt.annotation_path, num_segments = opt.num_segments, modality = opt.modality, transform = spatial_transform, test_mode = True) elif opt.dataset == 'hmdb51': test_data = HMDB51( opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'something': test_data = Something( opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'fire': opt.annotation_path = "/DATACENTER2/wxy/workspace/senet-3d/datasets/txt/test_fire.txt" test_data = FIRE( opt.video_path, opt.annotation_path, num_segments = opt.num_segments, modality = opt.modality, transform = spatial_transform, test_mode=True, test_idx=opt.test_idx) return test_data
def get_test_set(opt, spatial_transform, temporal_transform, target_transform, score_sens_mode=False, score_inf_mode=False, inner_temp_transform=None): assert opt.dataset in [ 'kinetics', 'activitynet', 'ucf101', 'hmdb51', 'something' ] assert opt.test_subset in ['val', 'test'] if opt.test_subset == 'val': subset = 'validation' elif opt.test_subset == 'test': subset = 'testing' if opt.dataset == 'kinetics': test_data = Kinetics(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration, sample_stride=opt.sample_stride) elif opt.dataset == 'activitynet': test_data = ActivityNet(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'ucf101': test_data = UCF101( opt.video_path, opt.annotation_path, subset, # 0, 1, # sample 1 clip each video spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration, score_sens_mode=score_sens_mode, score_inf_mode=score_inf_mode) elif opt.dataset == 'hmdb51': test_data = HMDB51(opt.video_path, opt.annotation_path, subset, 0, spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration) elif opt.dataset == 'something': test_data = Something( opt.video_path, opt.annotation_path, subset, # 0, 1, # sample 1 clip each video spatial_transform, temporal_transform, target_transform, sample_duration=opt.sample_duration, score_sens_mode=score_sens_mode, score_inf_mode=score_inf_mode, inner_temp_transform=inner_temp_transform) return test_data