# Copy ourselves to outdir to replicate results if not os.path.exists(outdir): os.makedirs(outdir) shutil.copy(__file__, os.path.join(outdir, 'train.py')) print('Loading data ... ', end='') if rotate: rotate_transform = datasets.RandomRotate(p=rotate) else: rotate_transform = None dataset = {} dataloader = {} dataset['train'] = datasets.FreiburgRGBDDataset('data', mode='train', color=color, transform=rotate_transform, seed=42) dataloader['train'] = DataLoader(dataset['train'], batch_size=16, shuffle=True, num_workers=0) dataset['val'] = datasets.FreiburgRGBDDataset('data', mode='val', color=color, seed=42) dataloader['val'] = DataLoader(dataset['val'], batch_size=16, shuffle=True, num_workers=0) print('OK.')
# Copy ourselves to outdir to replicate results if not os.path.exists(outdir): os.makedirs(outdir) shutil.copy(__file__, os.path.join(outdir, 'train.py')) print('Loading data ... ', end='') if rotate: rotate_transform = datasets.RandomRotate(p=rotate) else: rotate_transform = None dataset = {} dataloader = {} dataset['train'] = datasets.FreiburgRGBDDataset('data', mode='train', color=None, transform=None, seed=42) dataloader['train'] = DataLoader(dataset['train'], batch_size=16, shuffle=True, num_workers=0) dataset['val'] = datasets.FreiburgRGBDDataset('data', mode='val', color=None, seed=42) dataloader['val'] = DataLoader(dataset['val'], batch_size=16, shuffle=True, num_workers=0) print('OK.')
import numpy as np import shutil from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import datasets import networks # Variables dropout = True color = True outdir = '/imatge/jdelarica/work/PycharmProjects/TFG/tests_512_100_50_1/sgd_lr0.0001_mom0.0_wd0.0_drop_color' print('Loading data ... ', end='') dataset = datasets.FreiburgRGBDDataset('data', mode='test', color=color) dataloader = DataLoader(dataset, batch_size=16, shuffle=True, num_workers=0) print('OK.') print('Creating network ... ', end='') net = networks.NetFC(nodes=[dataset.get_input_size(), 600, 100, 1], dropout=dropout) net.load_state_dict(torch.load(os.path.join(outdir, 'net.pkl'))) print('OK.') print('Creating loss and optimizer ... ', end='') criterion = nn.BCELoss(size_average=False) #optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) print('OK.') cuda = torch.cuda.is_available()