def main():
    global args, best_prec1
    args = parser.parse_args()

    args.distributed = args.world_size > 1

    if args.distributed:
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size)

    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch](low_dim=args.low_dim)

    if not args.distributed:
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()
    else:
        model.cuda()
        model = torch.nn.parallel.DistributedDataParallel(model)


    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_dataset = datasets.ImageFolderInstance(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(224, scale=(0.2,1.)),
            transforms.RandomGrayscale(p=0.2),
            transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    val_loader = torch.utils.data.DataLoader(
        datasets.ImageFolderInstance(valdir, transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ])),
        batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True)

    # define lemniscate and loss function (criterion)
    ndata = train_dataset.__len__()
    if args.nce_k > 0:
        lemniscate = NCEAverage(args.low_dim, ndata, args.nce_k, args.nce_t, args.nce_m).cuda()
        criterion = NCECriterion(ndata).cuda()
    else:
        lemniscate = LinearAverage(args.low_dim, ndata, args.nce_t, args.nce_m).cuda()
        criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            lemniscate = checkpoint['lemniscate']
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    if args.evaluate:
        kNN(0, model, lemniscate, train_loader, val_loader, 200, args.nce_t)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        adjust_learning_rate(optimizer, epoch)

        # train for one epoch
        train(train_loader, model, lemniscate, criterion, optimizer, epoch)

        # evaluate on validation set
        prec1 = NN(epoch, model, lemniscate, train_loader, val_loader)

        # remember best prec@1 and save checkpoint
        is_best = prec1 > best_prec1
        best_prec1 = max(prec1, best_prec1)
        save_checkpoint({
            'epoch': epoch + 1,
            'arch': args.arch,
            'state_dict': model.state_dict(),
            'lemniscate': lemniscate,
            'best_prec1': best_prec1,
            'optimizer' : optimizer.state_dict(),
        }, is_best)
    # evaluate KNN after last epoch
    kNN(0, model, lemniscate, train_loader, val_loader, 200, args.nce_t)
Exemple #2
0
    and callable(models.__dict__[name]))

model = models.__dict__['resnet18'](low_dim=128)
checkpoint = torch.load('lemniscate_resnet18.pth.tar')
model = torch.nn.DataParallel(model).cuda()
model.load_state_dict(checkpoint['state_dict'])
model.eval()
#load query data set from root/datas/val1
traindir = os.path.join('datas', 'val1')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])

train_dataset = datasets.ImageFolderInstance(
    traindir,
    transforms.Compose([
        transforms.Resize((224,224)),
        transforms.ToTensor(),
        normalize,
    ]))
train_loader = torch.utils.data.DataLoader(
    train_dataset)


# compute the cosin similarity with perfect_500k dataset for each feature vector in query data set
for i, (input, _, index) in enumerate(train_loader):
    #test_index=the image ID of query image
    test_index=train_dataset.imgs[i][0].split('/')[3].split('.')[0]
    print test_index
    # measure data loading time
    index = index.cuda(async=True)
    input_var = torch.autograd.Variable(input)
Exemple #3
0
def main(args):
    # _size = 32
    _size = 224

    # fix random seeds
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)

    best_prec1 = 0

    # load model
    print('==> Building model..')
    # net = models.__dict__['ResNet18'](low_dim=args.low_dim)
    net = models.__dict__['alexnet'](out=args.low_dim)
    net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))

    checkpoint = torch.load(args.model)
    net.load_state_dict(checkpoint['net'])

    # model = load_model(args.model)
    model = net
    model.cuda()
    cudnn.benchmark = True

    # freeze the features layers
    for param in model.parameters(): #features.
        param.requires_grad = False

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

    # data loading code
    # traindir = os.path.join(args.data, 'train')
    # valdir = os.path.join(args.data, 'val')

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    transform_train = transforms.Compose([
        transforms.Resize(size=_size),
        transforms.RandomResizedCrop(size=_size, scale=(0.2, 1.)),
        transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
        transforms.RandomGrayscale(p=0.2),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize,
    ])

    if args.tencrops:
        transform_test = transforms.Compose([
            transforms.Resize(size=_size),
            transforms.Lambda(lambda crops: torch.stack([normalize(transforms.ToTensor()(crop)) for crop in crops])),
        ])
    else:
        transform_test = transforms.Compose([
            transforms.Resize(size=_size),
            transforms.CenterCrop(_size),
            transforms.ToTensor(),
            normalize,
        ])

    trainset = cifar_datasets.ImageFolderInstance('/data2/zyf/ImageNet/ILSVRC2012-100/train',
                                            transform=transform_train, two_crop=True)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=8)

    testset = cifar_datasets.ImageFolderInstance('/data2/zyf/ImageNet/ILSVRC2012-100/val',
                                           transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=8)


    # logistic regression
    reglog = AlexnetRegLog(args.conv, len(trainset.classes)).cuda()
    optimizer = torch.optim.SGD(
        filter(lambda x: x.requires_grad, reglog.parameters()),
        args.lr,
        momentum=args.momentum,
        weight_decay=10 ** args.weight_decay
    )

    for epoch in range(args.epochs):
        end = time.time()

        # train for one epoch
        train(trainloader, model, reglog, criterion, optimizer, epoch, forward_alexnet)

        # evaluate on validation set
        prec1, prec5, loss = validate(testloader, model, reglog, criterion, forward_alexnet)
        writer.add_scalar('acc', prec1, epoch)

        # loss_log.log(loss)
        # prec1_log.log(prec1)
        # prec5_log.log(prec5)

        # remember best prec@1 and save checkpoint
        is_best = prec1 > best_prec1
        best_prec1 = max(prec1, best_prec1)
        if is_best:
            filename = 'pcf200_model_best.pth.tar'
            print('best acc: ' + str(prec1))
        else:
            filename = 'pcf200_checkpoint.pth.tar'
        torch.save({
            'epoch': epoch + 1,
            'arch': 'net',
            'state_dict': model.state_dict(),
            'prec5': prec5,
            'best_prec1': best_prec1,
            'optimizer': optimizer.state_dict(),
        }, os.path.join(args.exp, filename))
Exemple #4
0
def main():

    global args, best_prec1
    args = parser.parse_args()

    # Initialize distributed processing
    args.distributed = args.world_size > 1
    if args.distributed:
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size)

    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True,
                                           low_dim=args.low_dim)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch](low_dim=args.low_dim)

    if not args.distributed:
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()
    else:
        model.cuda()
        model = torch.nn.parallel.DistributedDataParallel(model)

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')
    normalize = transforms.Normalize(
        mean=[0.485, 0.456, 0.406],  # ImageNet stats
        std=[0.229, 0.224, 0.225])
    #    normalize = transforms.Normalize(mean=[0.234, 0.191, 0.159],  # xView stats
    #                                     std=[0.173, 0.143, 0.127])

    print("Creating datasets")
    cj = args.color_jit
    train_dataset = datasets.ImageFolderInstance(
        traindir,
        transforms.Compose([
            transforms.Resize((224, 224)),
            #            transforms.Grayscale(3),
            #            transforms.ColorJitter(cj, cj, cj, cj), #transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
            transforms.RandomHorizontalFlip(),
            transforms.RandomVerticalFlip(),
            transforms.RandomRotation(45),
            transforms.ToTensor(),
            normalize,
        ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_dataset)
    elif args.balanced_sampling:

        print("Using balanced sampling")
        # Here's where we compute the weights for WeightedRandomSampler
        class_counts = {v: 0 for v in train_dataset.class_to_idx.values()}
        for path, ndx in train_dataset.samples:
            class_counts[ndx] += 1
        total = float(np.sum([v for v in class_counts.values()]))
        class_probs = [
            class_counts[ndx] / total for ndx in range(len(class_counts))
        ]

        # make a list of class probabilities corresponding to the entries in train_dataset.samples
        reciprocal_weights = [
            class_probs[idx]
            for i, (_, idx) in enumerate(train_dataset.samples)
        ]

        # weights are the reciprocal of the above
        weights = (1 / torch.Tensor(reciprocal_weights))

        train_sampler = torch.utils.data.sampler.WeightedRandomSampler(
            weights, len(train_dataset), replacement=True)
    else:
        #if args.red_data is < 1, then the training is done with a subsamle of the total data. Otherwise it's the total data.
        data_size = len(train_dataset)
        sub_index = np.random.randint(0, data_size,
                                      round(args.red_data * data_size))
        sub_index.sort()
        train_sampler = torch.utils.data.sampler.SubsetRandomSampler(sub_index)

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler)

    print("Training on", len(train_dataset.imgs),
          "images. Training batch size:", args.batch_size)

    if len(train_dataset.imgs) % args.batch_size != 0:
        print(
            "Warning: batch size doesn't divide the # of training images so ",
            len(train_dataset.imgs) % args.batch_size,
            "images will be skipped per epoch.")
        print("If you don't want to skip images, use a batch size in:",
              get_factors(len(train_dataset.imgs)))

    val_dataset = datasets.ImageFolderInstance(
        valdir,
        transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            normalize,
        ]))

    val_bs = [
        factor for factor in get_factors(len(val_dataset)) if factor < 500
    ][-1]
    val_bs = 100
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=val_bs,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    print("Validating on", len(val_dataset), "images. Validation batch size:",
          val_bs)

    # define lemniscate and loss function (criterion)
    ndata = train_dataset.__len__()
    if args.nce_k > 0:
        lemniscate = NCEAverage(args.low_dim, ndata, args.nce_k, args.nce_t,
                                args.nce_m)
        criterion = NCECriterion(ndata).cuda()
    else:
        lemniscate = LinearAverage(args.low_dim, ndata, args.nce_t,
                                   args.nce_m).cuda()
        criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.static_loss,
                                       verbose=False)
            optimizer.load_state_dict(checkpoint['optimizer'])
            args.start_epoch = checkpoint['epoch']
            #           best_prec1 = checkpoint['best_prec1']
            lemniscate = checkpoint['lemniscate']
            if args.select_load:
                pred = checkpoint['prediction']
            print("=> loaded checkpoint '{}' (epoch {}, best_prec1 )".format(
                args.resume,
                checkpoint['epoch']))  #, checkpoint['best_prec1']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    # optionally fine-tune a model trained on a different dataset
    elif args.fine_tune:
        print("=> loading checkpoint '{}'".format(args.fine_tune))
        checkpoint = torch.load(args.fine_tune)
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.static_loss,
                                   verbose=False)
        print("=> loaded checkpoint '{}' (epoch {})".format(
            args.fine_tune, checkpoint['epoch']))
    else:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.static_loss,
                                   verbose=False)

    # Optionally recompute memory. If fine-tuning, then we must recompute memory
    if args.recompute_memory or args.fine_tune:

        # Aaron - Experiments show that iterating over torch.utils.data.DataLoader will skip the last few
        # unless the batch size evenly divides size of the data set. This shouldn't be the case
        # according to documentation, there's even a flag for drop_last, but it's not working

        # compute a good batch size for re-computing memory
        memory_bs = [
            factor for factor in get_factors(len(train_loader.dataset))
            if factor < 500
        ][-1]
        print("Recomputing memory using", train_dataset.root,
              "with a batch size of", memory_bs)
        transform_bak = train_loader.dataset.transform
        train_loader.dataset.transform = val_loader.dataset.transform
        temploader = torch.utils.data.DataLoader(
            train_loader.dataset,
            batch_size=memory_bs,
            shuffle=False,
            num_workers=train_loader.num_workers,
            pin_memory=True)
        lemniscate.memory = torch.zeros(len(train_loader.dataset),
                                        args.low_dim).cuda()
        model.eval()
        with torch.no_grad():
            for batch_idx, (inputs, targets,
                            indexes) in enumerate(tqdm.tqdm(temploader)):
                batchSize = inputs.size(0)
                features = model(inputs)
                lemniscate.memory[batch_idx * batchSize:batch_idx * batchSize +
                                  batchSize, :] = features.data
        train_loader.dataset.transform = transform_bak
        model.train()

    cudnn.benchmark = True

    if args.evaluate:
        kNN(model, lemniscate, train_loader, val_loader, args.K, args.nce_t)
        return

    begin_train_time = datetime.datetime.now()

    #    my_knn(model, lemniscate, train_loader, val_loader, args.K, args.nce_t, train_dataset, val_dataset)
    if args.tsne:
        labels = idx_to_name(train_dataset, args.graph_labels)
        tsne(lemniscate, args.tsne, labels)
    if args.pca:
        labels = idx_to_name(train_dataset, args.graph_labels)
        pca(lemniscate, labels)
    if args.view_knn:
        my_knn(model, lemniscate, train_loader, val_loader, args.K, args.nce_t,
               train_dataset, val_dataset)
    if args.kmeans:
        kmeans, yi = kmean(lemniscate, args.kmeans, 500, args.K, train_dataset)
        D, I = kmeans.index.search(lemniscate.memory.data.cpu().numpy(), 1)

        cent_group = {}
        data_cent = {}
        for n, i in enumerate(I):
            if i[0] not in cent_group.keys():
                cent_group[i[0]] = []
            cent_group[i[0]].append(n)
        data_cent[n] = i[0]

        train_sampler = torch.utils.data.sampler.SubsetRandomSampler(
            cent_group[0])
        train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=args.batch_size,
            shuffle=(train_sampler is None),
            num_workers=args.workers,
            pin_memory=True,
            sampler=train_sampler)

#        lemniscate = NCEAverage(args.low_dim, ndata, args.nce_k, args.nce_t, args.nce_m)
#        criterion = NCECriterion(ndata).cuda()

#    lemniscate = NCEAverage(args.low_dim, ndata, args.nce_k, args.nce_t, args.nce_m)

    if args.tsne_grid:
        tsne_grid(val_loader, model)
    if args.h_cluster:
        for size in range(2, 3):
            #        size = 20
            kmeans, topk = kmean(lemniscate, size, 500, 10, train_dataset)
            respred = torch.tensor([]).cuda()
            lab, idx = [[] for i in range(2)]
            num = 0
            '''
            for p,index,label in pred:
                respred = torch.cat((respred,p))
                if num == 0:
                    lab = label
                else:
                    lab += label
                idx.append(index)
                num+=1
            '''
            h_cluster(lemniscate, train_dataset, kmeans, topk,
                      size)  #, respred, lab, idx)

#    axis_explore(lemniscate, train_dataset)

#    kmeans_opt(lemniscate, 5)

    if args.select:
        if not args.select_load:
            pred = []

            if args.select_size:
                size = int(args.select_size * ndata)
            else:
                size = round(ndata / 100.0)

            sub_sample = np.random.randint(0, ndata, size=size)
            train_sampler = torch.utils.data.sampler.SubsetRandomSampler(
                sub_sample)
            train_loader = torch.utils.data.DataLoader(
                train_dataset,
                batch_size=args.batch_size,
                shuffle=(train_sampler is None),
                num_workers=args.workers,
                pin_memory=True,
                sampler=train_sampler)

            pred = div_train(train_loader, model, 0, pred)

        pred_features = []
        pred_labels = []
        pred_idx = []

        for inst in pred:
            feat, idx, lab = list(inst)
            pred_features.append(feat)
            pred_labels.append(lab)
            pred_idx.append(idx.data.cpu())

        if args.select_save:

            save_checkpoint(
                {
                    'epoch': args.start_epoch,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'prediction': pred,
                    'lemniscate': lemniscate,
                    'optimizer': optimizer.state_dict(),
                }, 'select.pth.tar')

        min_idx = selection(pred_features, pred_idx, train_dataset,
                            args.select_num, args.select_thresh)

        train_sampler = torch.utils.data.sampler.SubsetRandomSampler(min_idx)

        train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=args.batch_size,
            shuffle=(train_sampler is None),
            num_workers=args.workers,
            pin_memory=True,
            sampler=train_sampler)

        lemniscate = NCEAverage(args.low_dim, ndata, 20, args.nce_t,
                                args.nce_m)

        optimizer = torch.optim.SGD(model.parameters(),
                                    0.1,
                                    momentum=0.1,
                                    weight_decay=0.00001)

        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.static_loss,
                                   verbose=False)

        for epoch in range(50):
            if args.distributed:
                train_sampler.set_epoch(epoch)
            adjust_learning_rate(optimizer, epoch)

            if epoch % 1 == 0:
                save_checkpoint({
                    'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'lemniscate': lemniscate,
                    'optimizer': optimizer.state_dict(),
                })

            train(train_loader, model, lemniscate, criterion, optimizer, epoch)

        train_sampler = torch.utils.data.sampler.SubsetRandomSampler(sub_index)
        train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=args.batch_size,
            shuffle=(train_sampler is None),
            num_workers=args.workers,
            pin_memory=True,
            sampler=train_sampler)

        lemniscate = NCEAverage(args.low_dim, ndata, args.nce_k, args.nce_t,
                                args.nce_m)
        optimizer = torch.optim.SGD(model.parameters(),
                                    args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.static_loss,
                                   verbose=False)

    if args.kmeans_opt:
        kmeans_opt(lemniscate, 500)

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        adjust_learning_rate(optimizer, epoch)

        if epoch % 1 == 0:
            # evaluate on validation set
            #prec1 = NN(epoch, model, lemniscate, train_loader, train_loader) # was evaluating on train
            #            prec1 = kNN(model, lemniscate, train_loader, val_loader, args.K, args.nce_t)
            # prec1 really should be renamed to prec5 as kNN now returns top5 score, but
            # it won't be backward's compatible as earlier models were saved with "best_prec1"

            # remember best prec@1 and save checkpoint
            #            is_best = prec1 > best_prec1
            #            best_prec1 = max(prec1, best_prec1)
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'lemniscate': lemniscate,
                #                'best_prec1': best_prec1,
                'optimizer': optimizer.state_dict(),
            })  # , is_best)

        # train for one epoch
        train(train_loader, model, lemniscate, criterion, optimizer, epoch)

#        kmeans,cent = kmeans()
#        group_train(train_loader, model, lemniscate, criterion, optimizer, epoch, kmeans, cent)

# print elapsed time
    end_train_time = datetime.datetime.now()
    d = end_train_time - begin_train_time
    print(
        "Trained for %d epochs. Elapsed time: %s days, %.2dh: %.2dm: %.2ds" %
        (len(range(args.start_epoch, args.epochs)), d.days, d.seconds // 3600,
         (d.seconds // 60) % 60, d.seconds % 60))
Exemple #5
0
def main(args):

    # Data
    print('==> Preparing data..')
    _resize = 256
    _size = 224
    transform_train = transforms.Compose([
        transforms.Resize(size=_resize),
        transforms.RandomResizedCrop(size=_size, scale=(0.2, 1.)),
        transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
        transforms.RandomGrayscale(p=0.2),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ])

    transform_test = transforms.Compose([
        transforms.Resize(size=_resize),
        transforms.CenterCrop(_size),  ###
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ])

    trainset = datasets.ImageFolderInstance('/data2/zyf/ImageNet/ILSVRC2012-100/train',
                                            transform=transform_train, two_crop=True)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=16)

    testset = datasets.ImageFolderInstance('/data2/zyf/ImageNet/ILSVRC2012-100/val',
                                           transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=16)

    classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
    ndata = trainset.__len__()
    print('trainset length: ' + str(ndata))

    print('==> Building model..')
    # net = models.__dict__['ResNet18'](low_dim=args.low_dim)

    # net = models.__dict__['resnet18'](low_dim=args.low_dim)
    net = models.__dict__['alexnet'](out=args.low_dim)
    # net2 = models.__dict__['appendnet'](low_dim=args.low_dim)

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    if device == 'cuda':
        net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))
        # net2 = torch.nn.DataParallel(net2, device_ids=range(torch.cuda.device_count()))
        cudnn.benchmark = True

    # define loss function: inner product loss within each mini-batch
    # criterion = BatchCriterion(args.batch_m, args.batch_t, args.batch_size, ndata)
    criterion = ICRcriterion()
    # define loss function: inner product loss within each mini-batch
    uel_criterion = BatchCriterion(args.batch_m, args.batch_t, args.batch_size, ndata)

    net.to(device)
    # net2.to(device)
    criterion.to(device)
    uel_criterion.to(device)
    best_acc = 0  # best test accuracy
    start_epoch = 0  # start from epoch 0 or last checkpoint epoch


    cluster_ratio = args.cluster_ratio
    if args.test_only or len(args.resume) > 0:
        cluster_ratio = args.cluster_ratio
        # Load checkpoint.
        model_path = 'checkpoint/' + args.resume
        print('==> Resuming from checkpoint..')
        assert os.path.isdir(args.model_dir), 'Error: no checkpoint directory found!'
        checkpoint = torch.load(model_path)
        net.load_state_dict(checkpoint['net'])
        best_acc = checkpoint['acc']
        start_epoch = checkpoint['epoch']


    # define leminiscate
    if args.test_only and len(args.resume) > 0:

        trainFeatures, feature_index = compute_feature(trainloader, net, len(trainset), args)
        lemniscate = LinearAverage(torch.tensor(trainFeatures), args.low_dim, ndata, args.nce_t, args.nce_m)

    else:

        lemniscate = LinearAverage(torch.tensor([]), args.low_dim, ndata, args.nce_t, args.nce_m)
    lemniscate.to(device)

    # define optimizer
    optimizer = torch.optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
    # optimizer2 = torch.optim.SGD(net2.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)


    # test acc
    if args.test_only:
        acc = kNN(0, net, trainloader, testloader, 200, args.batch_t, ndata, low_dim=args.low_dim)
        exit(0)


    if len(args.resume) > 0:
        best_acc = best_acc
        start_epoch = start_epoch + 1
    else:
        best_acc = 0  # best test accuracy
        start_epoch = 0  # start from epoch 0 or last checkpoint epoch

    icr2 = ICRDiscovery(ndata)

    # init_cluster_num = 20000
    for round in range(5):
        for epoch in range(start_epoch, 200):
            #### get Features

            # trainFeatures are trainloader features and shuffle=True, so feature_index is match data
            trainFeatures, feature_index = compute_feature(trainloader, net, len(trainset), args)

            if round == 0:
                y = -1 * math.log10(ndata-5) / 200 * epoch + math.log10(ndata-5)
                cluster_num = int(math.pow(10, y))
                if cluster_num <= args.nmb_cluster:
                    cluster_num = args.nmb_cluster

                print('cluster number: ' + str(cluster_num))

                ###clustering algorithm to use
                # faiss cluster
                deepcluster = clustering.__dict__[args.clustering](int(cluster_num))

                #### Features to clustering
                clustering_loss = deepcluster.cluster(trainFeatures, feature_index, verbose=args.verbose)

                L = np.array(deepcluster.images_lists)
                image_dict = deepcluster.images_dict

                print('create ICR ...')
                # icr = ICRDiscovery(ndata)

                # if args.test_only and len(args.resume) > 0:
                # icr = cluster_assign(icr, L, trainFeatures, feature_index, trainset,
                # cluster_ratio + epoch*((1-cluster_ratio)/250))
                icrtime = time.time()

                # icr = cluster_assign(epoch, L, trainFeatures, feature_index, 1, 1)
                if epoch < args.warm_epoch:
                    icr = cluster_assign(epoch, L, trainFeatures, feature_index, args.cluster_ratio, 1)
                else:
                    icr = PreScore(epoch, L, image_dict, trainFeatures, feature_index, trainset,
                                   args.high_ratio, args.cluster_ratio, args.alpha, args.beta)

                print('calculate ICR time is: {}'.format(time.time() - icrtime))
                writer.add_scalar('icr_time', (time.time() - icrtime), epoch + round * 200)

            else:
                cluster_num = args.nmb_cluster
                print('cluster number: ' + str(cluster_num))

                ###clustering algorithm to use
                # faiss cluster
                deepcluster = clustering.__dict__[args.clustering](int(cluster_num))

                #### Features to clustering
                clustering_loss = deepcluster.cluster(trainFeatures, feature_index, verbose=args.verbose)

                L = np.array(deepcluster.images_lists)
                image_dict = deepcluster.images_dict

                print('create ICR ...')
                # icr = ICRDiscovery(ndata)

                # if args.test_only and len(args.resume) > 0:
                # icr = cluster_assign(icr, L, trainFeatures, feature_index, trainset,
                # cluster_ratio + epoch*((1-cluster_ratio)/250))
                icrtime = time.time()

                # icr = cluster_assign(epoch, L, trainFeatures, feature_index, 1, 1)
                icr = PreScore(epoch, L, image_dict, trainFeatures, feature_index, trainset,
                                   args.high_ratio, args.cluster_ratio, args.alpha, args.beta)

                print('calculate ICR time is: {}'.format(time.time() - icrtime))
                writer.add_scalar('icr_time', (time.time() - icrtime), epoch + round * 200)

            # else:
            #     icr = cluster_assign(icr, L, trainFeatures, feature_index, trainset, 0.2 + epoch*0.004)

            # print(icr.neighbours)

            icr2 = train(epoch, net, optimizer, lemniscate, criterion, uel_criterion, trainloader,
                         icr, icr2, args.stage_update, args.lr, device, round)

            print('----------Evaluation---------')
            start = time.time()
            acc = kNN(0, net, trainloader, testloader, 200, args.batch_t, ndata, low_dim=args.low_dim)
            print("Evaluation Time: '{}'s".format(time.time() - start))

            writer.add_scalar('nn_acc', acc, epoch + round * 200)

            if acc > best_acc:
                print('Saving..')
                state = {
                    'net': net.state_dict(),
                    'acc': acc,
                    'epoch': epoch,
                }
                if not os.path.isdir(args.model_dir):
                    os.mkdir(args.model_dir)
                torch.save(state, './checkpoint/ckpt_best_round_{}.t7'.format(round))
                if epoch < 200:
                    torch.save(state, './checkpoint/ckpt_200_best_round_{}.t7'.format(round))
                if epoch < 300:
                    torch.save(state, './checkpoint/ckpt_300_best_round_{}.t7'.format(round))
                best_acc = acc

            state = {
                'net': net.state_dict(),
                'acc': acc,
                'epoch': epoch,
            }
            if epoch < 200:
                torch.save(state, './checkpoint/ckpt_200_last_round_{}.t7'.format(round))
            else:
                torch.save(state, './checkpoint/ckpt_last_round_{}.t7'.format(round))

            if epoch < 300:
                torch.save(state, './checkpoint/ckpt_300_last_round_{}.t7'.format(round))

            print('[Round]: {} [Epoch]: {} \t accuracy: {}% \t (best acc: {}%)'.format(round, epoch, acc, best_acc))
Exemple #6
0
def main():
    global args, best_prec1
    args = parser.parse_args()
    print(args)

    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch](low_dim=args.low_dim)

    if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
        model.features = torch.nn.DataParallel(model.features)
        model.cuda()
    else:
        model = torch.nn.DataParallel(model).cuda()

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_dataset = datasets.ImageFolderInstance(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
            transforms.RandomGrayscale(p=0.2),
            transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))
    train_labels = torch.tensor(train_dataset.targets).long().cuda()
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=None)

    val_loader = torch.utils.data.DataLoader(datasets.ImageFolderInstance(
        valdir,
        transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ])),
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    # define lemniscate and loss function (criterion)
    ndata = train_dataset.__len__()
    lemniscate = LinearAverage(args.low_dim, ndata, args.nce_t,
                               args.nce_m).cuda()
    rlb = ReliableSearch(ndata, args.low_dim, args.threshold_1,
                         args.threshold_2, args.batch_size).cuda()
    criterion = ReliableCrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = 0
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            lemniscate = checkpoint['lemniscate']
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    if args.evaluate:
        kNN(0, model, lemniscate, train_loader, val_loader, 200, args.nce_t)
        return

    for rnd in range(args.start_round, args.rounds):

        if rnd > 0:
            memory = recompute_memory(model, lemniscate, train_loader,
                                      val_loader, args.batch_size,
                                      args.workers)
            num_reliable_1, consistency_1, num_reliable_2, consistency_2 = rlb.update(
                memory, train_labels)
            print(
                'Round [%02d/%02d]\tReliable1: %.12f\tReliable2: %.12f\tConsistency1: %.12f\tConsistency2: %.12f'
                % (rnd, args.rounds, num_reliable_1, num_reliable_2,
                   consistency_1, consistency_2))

        for epoch in range(args.start_epoch, args.epochs):
            adjust_learning_rate(optimizer, epoch)

            # train for one epoch
            train(train_loader, model, lemniscate, rlb, criterion, optimizer,
                  epoch)

            # evaluate on validation set
            prec1 = NN(epoch, model, lemniscate, train_loader, val_loader)

            # remember best prec@1 and save checkpoint
            is_best = prec1 > best_prec1
            best_prec1 = max(prec1, best_prec1)
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'lemniscate': lemniscate,
                    'best_prec1': best_prec1,
                    'optimizer': optimizer.state_dict(),
                    #}, is_best, filename='ckpts/%02d-%04d-checkpoint.pth.tar'%(rnd+1, epoch + 1))
                },
                is_best)

        save_checkpoint(
            {
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'lemniscate': lemniscate,
                'best_prec1': best_prec1,
                'optimizer': optimizer.state_dict(),
            },
            is_best=False,
            filename='ckpts/%02d-checkpoint.pth.tar' % (rnd + 1))

        # evaluate KNN after last epoch
        top1, top5 = kNN(0, model, lemniscate, train_loader, val_loader, 200,
                         args.nce_t)
        print('Round [%02d/%02d]\tTop1: %.2f\tTop5: %.2f' %
              (rnd + 1, args.rounds, top1, top5))