def _get_maf_original(data_name): warnings.warn( "This function should generally not be called because it " "requires special setup but is kept here in order to reproduce functions if " "needed.") if sys.version_info < (3, ): # Load MNIST from MAF code maf_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "..", "maf") sys.path.append(maf_path) # noinspection PyPackageRequirements import datasets # maf/datasets/* # Reset datasets root directory relative to this file datasets.root = os.path.join(maf_path, "data") + "/" # Copied from maf/experiments.py if data_name == "mnist": data = datasets.MNIST(logit=True, dequantize=True) elif data_name == "bsds300": data = datasets.BSDS300() elif data_name == "cifar10": data = datasets.CIFAR10(logit=True, flip=True, dequantize=True) elif data_name == "power": data = datasets.POWER() elif data_name == "gas": data = datasets.GAS() elif data_name == "hepmass": data = datasets.HEPMASS() elif data_name == "miniboone": data = datasets.MINIBOONE() else: raise ValueError("Unknown dataset") # Make a dictionary instead of pickled object for better compatibility if hasattr(data.trn, "labels"): data_dict = dict( X_train=data.trn.x, y_train=data.trn.labels, X_validation=data.val.x, y_validation=data.val.labels, X_test=data.tst.x, y_test=data.tst.labels, data_name=data_name, ) else: data_dict = dict( X_train=data.trn.x, X_validation=data.val.x, X_test=data.tst.x, data_name=data_name, ) else: raise RuntimeError( "Must create data using Python 2 to load data since MAF is written for " "Python 2") return data_dict
def _get_maf_original(data_name): warnings.warn( 'This function should generally not be called because it ' 'requires special setup but is kept here in order to reproduce functions if ' 'needed.') if sys.version_info < (3, ): # Load MNIST from MAF code maf_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..', 'maf') sys.path.append(maf_path) # noinspection PyPackageRequirements import datasets # maf/datasets/* # Reset datasets root directory relative to this file datasets.root = os.path.join(maf_path, 'data') + '/' # Copied from maf/experiments.py if data_name == 'mnist': data = datasets.MNIST(logit=True, dequantize=True) elif data_name == 'bsds300': data = datasets.BSDS300() elif data_name == 'cifar10': data = datasets.CIFAR10(logit=True, flip=True, dequantize=True) elif data_name == 'power': data = datasets.POWER() elif data_name == 'gas': data = datasets.GAS() elif data_name == 'hepmass': data = datasets.HEPMASS() elif data_name == 'miniboone': data = datasets.MINIBOONE() else: raise ValueError('Unknown dataset') # Make a dictionary instead of pickled object for better compatibility if hasattr(data.trn, 'labels'): data_dict = dict( X_train=data.trn.x, y_train=data.trn.labels, X_validation=data.val.x, y_validation=data.val.labels, X_test=data.tst.x, y_test=data.tst.labels, data_name=data_name, ) else: data_dict = dict( X_train=data.trn.x, X_validation=data.val.x, X_test=data.tst.x, data_name=data_name, ) else: raise RuntimeError( 'Must create data using Python 2 to load data since MAF is written for ' 'Python 2') return data_dict
def load_data(name): if name == 'bsds300': return datasets.BSDS300() elif name == 'power': return datasets.POWER() elif name == 'gas': return datasets.GAS() elif name == 'hepmass': return datasets.HEPMASS() elif name == 'miniboone': return datasets.MINIBOONE() else: raise ValueError('Unknown dataset')
def load_data(name): """ Loads the dataset. Has to be called before anything else. :param name: string, the dataset's name """ assert isinstance(name, str), 'Name must be a string' datasets.root = root_data global data, data_name if data_name == name: return if name == 'mnist': data = datasets.MNIST(logit=True, dequantize=True) data_name = name elif name == 'bsds300': data = datasets.BSDS300() data_name = name elif name == 'cifar10': data = datasets.CIFAR10(logit=True, flip=True, dequantize=True) data_name = name elif name == 'power': data = datasets.POWER() data_name = name elif name == 'gas': data = datasets.GAS() data_name = name elif name == 'hepmass': data = datasets.HEPMASS() data_name = name elif name == 'miniboone': data = datasets.MINIBOONE() data_name = name else: raise ValueError('Unknown dataset')
def load_data(name,logit=False,dequantize=False,flip = False): """ Loads the dataset. Has to be called before anything else. :param name: string, the dataset's name """ assert isinstance(name, str), 'Name must be a string' # global data if name == 'mnist': data = datasets.MNIST(logit=logit, dequantize=dequantize) elif name == 'bsds300': data = datasets.BSDS300() elif name == 'cifar10': data = datasets.CIFAR10(logit=logit, flip=flip, dequantize=dequantize) elif name == 'power': data = datasets.POWER() elif name == 'gas': data = datasets.GAS() elif name == 'hepmass': data = datasets.HEPMASS() elif name == 'miniboone': data = datasets.MINIBOONE() else: raise Exception('Unknown dataset') # get data splits X_train = data.trn.x X_val = data.val.x X_test = data.tst.x # Convert to float32 X_train = X_train.astype(np.float32) X_val = X_val.astype(np.float32) X_test = X_test.astype(np.float32) return data, X_train, X_val, X_test
def load_data(name, data_trn=None, data_val=None, labels_trn=None, labels_val=None): """ Loads the dataset. Has to be called before anything else. :param name: string, the dataset's name """ assert isinstance(name, str), 'Name must be a string' datasets.root = root_data global data, data_name if data_name == name: return if name == 'custom': # from maf.datasets import mnist from datasets import custom data = custom.CUSTOM(data_trn, data_val, labels_trn, labels_val, logit=True, dequantize=False) data_name = name elif name == 'mnist': # from maf.datasets import mnist from datasets import mnist data = mnist.MNIST(logit=True, dequantize=True) data_name = name elif name == 'bsds300': data = datasets.BSDS300() data_name = name elif name == 'cifar10': data = datasets.CIFAR10(logit=True, flip=True, dequantize=True) data_name = name elif name == 'power': data = datasets.POWER() data_name = name elif name == 'gas': data = datasets.GAS() data_name = name elif name == 'hepmass': data = datasets.HEPMASS() data_name = name elif name == 'miniboone': from datasets import miniboone data = miniboone.MINIBOONE() data_name = name else: raise ValueError('Unknown dataset')