def setup(): global barbara, barbara_t global bshape, bshape_half global ref_rowdfilt, ch py3nvml.grab_gpus(1, gpu_fraction=0.5, env_set_ok=True) barbara = datasets.barbara() barbara = (barbara / barbara.max()).astype('float32') barbara = barbara.transpose([2, 0, 1]) bshape = list(barbara.shape) bshape_half = bshape[:] bshape_half[2] //= 2 barbara_t = torch.unsqueeze(torch.tensor(barbara, dtype=torch.float32), dim=0).to(dev) ch = barbara_t.shape[1] # Some useful functions ref_rowdfilt = lambda x, ha, hb: np.stack( [np_coldfilt(s.T, ha, hb).T for s in x], axis=0)
def setup(): global barbara, barbara_t global bshape, bshape_extrarow global ref_colfilter, ch py3nvml.grab_gpus(1, gpu_fraction=0.5) barbara = datasets.barbara() barbara = (barbara / barbara.max()).astype('float32') barbara = barbara.transpose([2, 0, 1]) bshape = list(barbara.shape) bshape_extrarow = bshape[:] bshape_extrarow[1] += 1 barbara_t = torch.unsqueeze(torch.tensor(barbara, dtype=torch.float32), dim=0).to(dev) ch = barbara_t.shape[1] # Some useful functions ref_colfilter = lambda x, h: np.stack([np_colfilter(s, h) for s in x], axis=0)