Exemple #1
0
            if OPTS.train_sgd_steps > 0:
                tb_str += "_imit{}".format(OPTS.train_sgd_steps)
            tb_logdir = os.path.join(HOME_DIR, "tensorboard", "ebm",
                                     "{}_cassio".format(OPTS.dtok), tb_str)
            for logdir in [tb_logdir + "_train", tb_logdir + "_dev"]:
                os.makedirs(logdir, exist_ok=True)
        else:
            tb_logdir = os.path.join(OPTS.root, "tensorboard")
            if not os.path.exists(tb_logdir):
                os.mkdir(tb_logdir)

# Get the path variables
(train_src_corpus, train_tgt_corpus, distilled_tgt_corpus, truncate_datapoints,
 test_src_corpus, test_tgt_corpus, ref_path, src_vocab_path, tgt_vocab_path,
 n_valid_per_epoch, training_warmsteps, training_maxsteps,
 pretrained_autoregressive_path) = get_dataset_paths(OPTS.root, OPTS.dtok)

if OPTS.longertrain:
    training_maxsteps = int(training_maxsteps * 1.5)
if OPTS.x3longertrain:
    training_maxsteps = int(training_maxsteps * 3)

if nmtlab.__version__ < "0.7.0":
    print("lanmt now requires nmtlab >= 0.7.0")
    print("Update by pip install -U nmtlab")
    sys.exit()
if OPTS.fp16:
    print("fp16 option is not ready")
    sys.exit()

# Define dataset
Exemple #2
0
# Get the path variables
(
    train_src_corpus,
    train_tgt_corpus,
    distilled_tgt_corpus,
    truncate_datapoints,
    test_src_corpus,
    test_tgt_corpus,
    ref_path,
    src_vocab_path,
    tgt_vocab_path,
    n_valid_per_epoch,
    training_warmsteps,
    training_maxsteps,
    pretrained_autoregressive_path
) = get_dataset_paths(OPTS.root, OPTS.dtok)

if OPTS.longertrain:
    training_maxsteps = int(training_maxsteps * 1.5)
if OPTS.x3longertrain:
    training_maxsteps = int(training_maxsteps * 3)

if nmtlab.__version__ < "0.7.0":
    print("lanmt now requires nmtlab >= 0.7.0")
    print("Update by pip install -U nmtlab")
    sys.exit()

# Define dataset
if OPTS.distill:
    tgt_corpus = distilled_tgt_corpus
else:
Exemple #3
0
    torch.cuda.set_device(hvd.local_rank())
    part_index = hvd.rank()
    part_num = hvd.size()
    gpu_num = hvd.size()
else:
    part_index = 0
    part_num = 1
    gpu_num = 1
if is_root_node():
    print("Running on {} GPUs".format(gpu_num))

# Get the path variables
(train_src_corpus, train_tgt_corpus, distilled_tgt_corpus, truncate_datapoints,
 test_src_corpus, test_tgt_corpus, ref_path, src_vocab_path, tgt_vocab_path,
 n_valid_per_epoch, training_warmsteps, training_maxsteps,
 pretrained_autoregressive_path) = get_dataset_paths(DATA_ROOT, OPTS.dtok)

if OPTS.longertrain:
    training_maxsteps = int(training_maxsteps * 1.5)

if nmtlab.__version__ < "0.7.0":
    print("lanmt now requires nmtlab >= 0.7.0")
    print("Update by pip install -U nmtlab")
    sys.exit()
if OPTS.fp16:
    print("fp16 option is not ready")
    sys.exit()

# Define dataset
if OPTS.distill:
    tgt_corpus = distilled_tgt_corpus
Exemple #4
0
ap.add_argument("--opt_hiddensz", type=int, default=256)
ap.add_argument("--opt_without_source", action="store_true")
ap.add_argument("--opt_codebits", type=int, default=0)
ap.add_argument("--opt_limit_tree_depth", type=int, default=0)
ap.add_argument("--opt_limit_datapoints", type=int, default=-1)
ap.add_argument("--opt_load_pretrain", action="store_true")
ap.add_argument("--model_path", default="{}/tree2code.pt".format(DATA_ROOT))
ap.add_argument("--result_path",
                default="{}/tree2code.result".format(DATA_ROOT))
OPTS.parse(ap)

n_valid_per_epoch = 4

# Define datasets
DATA_ROOT = "./mydata"
dataset_paths = get_dataset_paths(DATA_ROOT, OPTS.dtok)

# Using horovod for training, automatically occupy all GPUs
# Determine the local rank
horovod_installed = importlib.util.find_spec("horovod") is not None
if torch.cuda.is_available() and horovod_installed:
    import horovod.torch as hvd
    hvd.init()
    torch.cuda.set_device(hvd.local_rank())
    part_index = hvd.rank()
    part_num = hvd.size()
    gpu_num = hvd.size()
else:
    part_index = 0
    part_num = 1
    gpu_num = 1