for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in range(dets.shape[0]): f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\ dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) def evaluate_proposals_msr(self, all_boxes, output_dir): # for each image for im_ind, index in enumerate(self.image_index): filename = os.path.join(output_dir, index + '.txt') print('Writing imagenet3d results to file ' + filename) with open(filename, 'wt') as f: dets = all_boxes[im_ind] if dets == []: continue for k in range(dets.shape[0]): f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format( dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) if __name__ == '__main__': d = datasets.imagenet3d('trainval') res = d.roidb from IPython import embed embed()
print 'Writing imagenet3d results to file ' + filename with open(filename, 'wt') as f: # for each class for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in xrange(dets.shape[0]): f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\ dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) def evaluate_proposals_msr(self, all_boxes, output_dir): # for each image for im_ind, index in enumerate(self.image_index): filename = os.path.join(output_dir, index + '.txt') print 'Writing imagenet3d results to file ' + filename with open(filename, 'wt') as f: dets = all_boxes[im_ind] if dets == []: continue for k in xrange(dets.shape[0]): f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) if __name__ == '__main__': d = datasets.imagenet3d('trainval') res = d.roidb from IPython import embed; embed()