freq = hist.sum(1) / hist.sum() print 'fwavacc', (freq[freq > 0] * iu[freq > 0]).sum() filename = os.path.join(output_dir, 'segmentation.txt') with open(filename, 'wt') as f: for i in range(n_cl): f.write('{:f}\n'.format(iu[i])) filename = os.path.join(output_dir, 'confusion_matrix.txt') with open(filename, 'wt') as f: for i in range(n_cl): for j in range(n_cl): f.write('{:f} '.format(hist[i, j])) f.write('\n') # pose accuracy if cfg.TEST.POSE_REG: for i in xrange(1, self.num_classes): print '{} correct poses: {}, all poses: {}, accuracy: {}'.format(self.classes[i], count_correct[i], count_all[i], float(count_correct[i]) / float(count_all[i])) if cfg.TEST.POSE_REFINE: print '{} correct poses after refinement: {}, all poses: {}, accuracy: {}'.format( \ self.classes[i], count_correct_refined[i], count_all[i], float(count_correct_refined[i]) / float(count_all[i])) print '{} correct poses after ICP: {}, all poses: {}, accuracy: {}'.format( \ self.classes[i], count_correct_icp[i], count_all[i], float(count_correct_icp[i]) / float(count_all[i])) if __name__ == '__main__': d = datasets.ycb('train') res = d.roidb from IPython import embed; embed()
with open(filename, 'wt') as f: for i in range(n_cl): f.write('{:f}\n'.format(iu[i])) filename = os.path.join(output_dir, 'confusion_matrix.txt') with open(filename, 'wt') as f: for i in range(n_cl): for j in range(n_cl): f.write('{:f} '.format(hist[i, j])) f.write('\n') # pose accuracy if cfg.TEST.POSE_REG: for i in range(1, self.num_classes): print( '{} correct poses: {}, all poses: {}, accuracy: {}'.format( self.classes[i], count_correct[i], count_all[i], float(count_correct[i]) / float(count_all[i]))) if cfg.TEST.POSE_REFINE: print('{} correct poses after refinement: {}, all poses: {}, accuracy: {}'.format( \ self.classes[i], count_correct_refined[i], count_all[i], float(count_correct_refined[i]) / float(count_all[i]))) print('{} correct poses after ICP: {}, all poses: {}, accuracy: {}'.format( \ self.classes[i], count_correct_icp[i], count_all[i], float(count_correct_icp[i]) / float(count_all[i]))) if __name__ == '__main__': d = datasets.ycb('trainval') res = d.roidb from IPython import embed embed()