Exemple #1
0
	def start(self):
		cv2.namedWindow("opening...")
		vc = cv2.VideoCapture(0)

		detect_flag = False

		videoflag = 0
		rval, frame = vc.read()
		s = time.time()
		a = time.time()
		tuples = [] # list of (image_ID, face, tag)
		self.faces = []
		while True:
			if frame is not None:
				pframe = cv2.flip(cv2.resize(frame, (960, 720)), 1)
				dframe = cv2.resize(pframe, (480, 360)) # size ratio = 4
				ratio = 2

			
				p = Photo()
				faces = detect_faces(self.detector, dframe)
				faces = sorted(faces, key=lambda tup: tup[0])
				for (r_x, r_y, r_w, r_h) in faces:
					x, y, w, h = ratio*r_x, ratio*r_y, ratio*r_w, ratio*r_h
					p.add_face(x, y, w, h)
					# Draw a rectangle around the faces
					cv2.rectangle(pframe, (x, y), (x+w, y+h), (255, 0, 0), 2)
				p.image = pframe
				p.extract_features()
				self.faces = []
				if len(p.faces) != 0:
					X = np.array([f.feature for f in p.faces])
					predY = self.model.predict(X)

					for (i, f) in enumerate(p.faces):
						if inv_label_maps[predY[i]] == 'T':
							cv2.rectangle(pframe, (f.x, f.y), (f.x+f.w, f.y+f.h), (0, 255, 0), 2)
						self.faces += [(f.x, f.y, f.w, f.h, inv_label_maps[predY[i]], None)]


				cv2.imshow("camera", pframe)

			
			rval, frame = vc.read()

			oper = cv2.waitKey(1) & 0xFF
			if oper == ord('p'):
				t = time.time()
				iname = datetime.datetime.fromtimestamp(t).strftime('%Y-%m-%d %H.%M.%S')
				print iname
				#iname = "/Users/GDog/Desktop/" + iname + ".png"
				self.images = pframe
				vc.release()
				cv2.destroyAllWindows()
				break
Exemple #2
0
	def start():
		cv2.namedWindow("preview")
		vc = cv2.VideoCapture(0)

		videoflag = 0
		rval, frame = vc.read()
		s = time.time()
		a = time.time()

		while True:
			if frame is not None:
				pframe = cv2.flip(cv2.resize(frame, (960, 720)), 1)
				p = Photo()
				faces = detect_faces(detector, pframe)
				faces = sorted(faces, key=lambda tup: tup[0])
				for (x, y, w, h) in faces:
					p.add_face(x, y, w, h)
					# Draw a rectangle around the faces
					cv2.rectangle(pframe, (x, y), (x+w, y+h), (255, 0, 0), 2)
				p.image = pframe
				p.extract_features()
				if len(p.faces) != 0:
					X = np.array([f.feature for f in p.faces])
					predY = model.predict(X)

					for (i, f) in enumerate(p.faces):
						if inv_label_maps[predY[i]] == 'T':
							cv2.rectangle(pframe, (f.x, f.y), (f.x+f.w, f.y+f.h), (0, 255, 0), 2)

					cv2.imshow("image", pframe)

			rval, frame = vc.read()
			oper = cv2.waitKey(1) & 0xFF
			if oper == ord('q'):
				break
			if oper == ord('p'):
				t = time.time()
				iname = datetime.datetime.fromtimestamp(t).strftime('%Y-%m-%d %H.%M.%S')
				print iname
				#iname = "/Users/GDog/Desktop/" + iname + ".png"
				self.images += [pframe]
				vc.release()
				break
Exemple #3
0
	videoflag = 0
	rval, frame = vc.read()
	s = time.time()
	a = time.time()

	while True:

		if frame is not None:
			#print frame.shape
			print "image extract:", time.time()-a
			a = time.time()
			pframe = cv2.flip(cv2.resize(frame, (960, 720)), 1)
			print "flip+resize: ", time.time()-a
			a = time.time()
			#detector part
			p = Photo()
			faces = detect_faces(detector, pframe)
			faces = sorted(faces, key=lambda tup: tup[0])
			for (x, y, w, h) in faces:
				p.add_face(x, y, w, h)
				# Draw a rectangle around the faces
				cv2.rectangle(pframe, (x, y), (x+w, y+h), (255, 0, 0), 2)
			print "detect: ", time.time()-a
			a = time.time()
			#filter part
			p.image = pframe
			p.extract_features()
			if len(p.faces) != 0:
				X = np.array([f.feature for f in p.faces])
				predY = model.predict(X)
Exemple #4
0
from utils import detect_faces
from datasets import Photo, inv_label_maps

if __name__ == "__main__":
    print "USAGE : python predict.py model_path (-d image_predfix)/(image_path) "
    model_path = sys.argv[1]
    if sys.argv[2] == "-d":
        image_prefix = sys.argv[3]
        image_list = [image_path for image_path in sorted(glob.glob(image_prefix + "/*.[Jj][Pp][Gg]"))]
    else:
        image_list = [sys.argv[2]]
    with open(model_path, "rb") as f:
        model = cPickle.load(f)

    for image_path in image_list:
        p = Photo()
        # before applying the filter
        image1 = cv2.imread(image_path)
        image1 = cv2.resize(image1, (960, 720))
        if image1 is None:
            print "no image", image_path
            continue
        detector = cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml")
        faces = detect_faces(detector, image1)
        print "find %d faces in image %s " % (len(faces), image_path)
        faces = sorted(faces, key=lambda tup: tup[0])
        for (x, y, w, h) in faces:
            p.add_face(x, y, w, h)
            # Draw a rectangle around the faces
            cv2.rectangle(image1, (x, y), (x + w, y + h), (0, 255, 0), 2)