Exemple #1
0
def get_data(run=127, threshold=0.05, force=False, ishotref=0, ishotsam=1):
    fname = "../data/fig_focusing_run%04d.h5" % run
    if not os.path.isfile(fname) or force:
        # this functions splits the data based on FOM < 0.5 --> p1 is the ref, p2 is the sample
        data = xppl37_spectra.calcSpectraForRun(run, force)
        idx = data.run.results[0].fom < 0.5
        E = data.run.E
        ref = ds.DataStorage(E=E, p1=data.p1[0], p2=data.p2[0])
        sample = ds.DataStorage(E=E, p1=data.p1[1], p2=data.p2[1])

        _, _, Abs = xppl37_spectra.calcAbs(ref, ref, threshold=threshold)
        ref.Abs = Abs

        _, _, Abs = xppl37_spectra.calcAbs(ref, sample, threshold=threshold)
        sample.Abs = Abs

        temp = ds.DataStorage(ref=ref, sample=sample)
        temp.info = "Abs calculated with threshold = %.3f" % threshold
        temp.save(fname)
        print('maybe forced to calculate again the Spectra to get idx_fom')

    data = ds.read(fname)
    ref = data.ref
    sample = data.sample
    _, _, Abs = xppl37_spectra.calcAbs(ref, ref, threshold=threshold)
    ref.Abs = Abs

    _, _, Abs = xppl37_spectra.calcAbs(ref, sample, threshold=threshold)
    sample.Abs = Abs

    data = ds.DataStorage(ref=ref, sample=sample)
    data["threshold"] = threshold

    return data, idx
 def setup_filename(self, runno, name, overwrite):
     fname = '{}run_{}.h5'.format(self.dir_save, runno)
     if name:
         fname = '{}run_{}_{}.h5'.format(self.dir_save, runno, name)
     if os.path.isfile(fname):
         print('The file {} already exists'.format(fname))
         if overwrite == 'question':
             mes = input('Do you want to remove (y,n) or rename (type new name):')
             if mes == 'y':
                 mes = True
             elif mes == 'n':
                 mes = False
         else:
             mes = overwrite
             print(mes)
         if mes:
             os.remove(fname)
             ds = self.setup_ds(fname)
             ds.save()
         elif not mes:
             ds = dsg.DataStorage(filename = fname)
         else:
             fname = '{}run_{}_{}.h5'.format(self.dir_save, runno, mes)
             ds = self.setup_ds(fname)
             ds.save()
     else:
         ds = self.setup_ds(fname)
         ds.save()
     print(fname)
     return ds, fname
 def setup_ds(self, fname):
     ds = dsg.DataStorage(filename = fname)
     print('Setting up datastorage file')
     ds['config'] = self.cfg
     ds['channels'] = {}
     self.ds = ds
     ds.save()
     return ds
Exemple #4
0
def saveAndRead(obj,fname="/tmp/test.h5",link_copy=False):
  obj = datastorage.DataStorage(obj)
  t0 = time.time()
  obj.save(fname,link_copy=link_copy,raiseError=True)
  t1 = time.time()
  obj1 = datastorage.read(fname)
#  for k in obj:
#      print("  %s %s %s"%(k,str(obj[k])[:10],str(obj1[k])[:10]))
  t2 = time.time()
  return t2-t1,t1-t0
Exemple #5
0
def get_data(run=82,calib=1,threshold=0.02,force=False):
  fname = "../data/fig_fe_xas_run%04d.h5" % run
  if not os.path.isfile(fname) or force:
    E,p1,p2,Abs=xppl37_spectra.calcAbsForRun(run,merge_calibs=True,threshold=threshold)
    temp = ds.DataStorage( E=E,p1=p1,p2=p2,Abs=Abs)
    temp.info="Abs calculated with threshold = %.3f" % threshold
    temp.save(fname)
  data = ds.read(fname)
  # nan is saved as -1 for masked arrays
  for k in data.keys():
    try:
      data[k][data[k]==-1] =np.nan
    except TypeError:
      pass
  return data
def get_data(runs=(155,156),threshold=0.02,force=False):
  run_hash = "_".join(map(str,runs))
  fname = "../data/fig_fe_xas_runs_%s.h5" % run_hash
  if not os.path.isfile(fname) or force:
    E,p1,p2,Abs=xppl37_spectra.calcAbsForRun(runs,merge_calibs=True,threshold=threshold)
    temp = ds.DataStorage( E=E,p1=p1,p2=p2,Abs=Abs)
    temp.info="Abs calculated with threshold = %.3f" % threshold
    temp.save(fname)
  data = ds.read(fname)
  # nan is saved as -1 for masked arrays
  for k in data.keys():
    try:
      data[k][data[k]==-1] =np.nan
    except TypeError:
      pass
  # for runs 155,156 the vernier stopped working after shots ~ 2000
  if runs == (155,156):
    data.p1=data.p1[:2000]
    data.p2=data.p2[:2000]
    data.Abs=data.Abs[:2000]
  return data
Exemple #7
0
def get_data(run, threshold=0.02, force=False):
    if run == 80:
        refCalibs = slice(1, None, 2)
    elif run == 84:
        refCalibs = slice(None, None, 2)
    elif run == 60:
        refCalibs = slice(None, None, 2)
    elif run == 76:
        refCalibs = slice(None, None)
    else:
        refCalibs = slice(None, None, 2)
    fname = "../data/fig_fel_modes_run%04d.h5" % run
    if not os.path.isfile(fname) or force:
        r = xanes_analyzeRun.AnalyzeRun(run=run)
        r.load()
        E = r.E
        calibs = list(r.results.keys())
        calibs.sort()
        calibs = calibs[refCalibs]
        p1 = np.vstack([r.results[c].p1 for c in calibs])
        p2 = np.vstack([r.results[c].p2 for c in calibs])
        #temp = ds.DataStorage( E=E,p1=p1.astype(np.float16),p2=p2.astype(np.float16))
        temp = ds.DataStorage(E=E, p1=p1, p2=p2)
        _, _, Abs = xppl37_spectra.calcAbs(temp, threshold=0.02)
        temp.Abs = Abs  #.astype(np.float16)
        temp.info = "Abs calculated with threshold = 0.02"
        temp.save(fname)
    data = ds.read(fname)
    # nan is saved as -1 for masked arrays
    for k in data.keys():
        try:
            data[k][data[k] == -1] = np.nan
        except (TypeError, AttributeError):
            pass
    print("Run %d → nshots = %d" % (run, len(data.p1)))
    p1, p2, Abs = xppl37_spectra.calcAbs(data, threshold=threshold)
    data.Abs = Abs
    return data
Exemple #8
0
    if bins is None:
        bin_center = motor_pos
    else:
        bin_center = bins
    bin_size = min(np.diff(bin_center))
    bin_edges = np.append(bin_center[0] - 0.5 * bin_size,
                          bin_center + 0.5 * bin_size)
    bin_target = np.digitize(motor_pos_tot, bin_edges)
    """ Loop through all bins """
    print('Start bin loop. \n')
    for bin_count, step_pos in enumerate(bin_center):
        if (not np.in1d(bin_count, step)) & (not (step == None)):
            continue

        start = time.time()
        results = datastorage.DataStorage()
        print('\n\nAnalyze bin {} of {}'.format(bin_count,
                                                len(bin_center) - 1))
        """ Find index for laser on/off shots in the bin """
        idx_bin = bin_target == (bin_count + 1)
        eventIds_bin = eventIds[idx_bin]
        if config.laserReprate:
            laser_off = np.mod(eventIds_bin, int(
                100 / config.laserReprate)) > 0
            laser_on = np.logical_not(laser_off)
        else:
            laser_off = np.ones(eventIds_bin.shape)
            laser_on = np.zeros(eventIds_bin.shape)

        JFdata = dict()
        """ Analyze I0 detector """
def get_1b():
  E,data=np.loadtxt("../data/Fe_1bunch.txt",unpack=True)
  return ds.DataStorage(E=E*1e3,data=data/2.05+0.07)