def draw_single_pages() : def make_lines(ndata,fullpage_metric) : # make horizontal data sets for metric and mean fullpage = np.ones_like(ndata) * fullpage_metric m = np.ones_like(ndata) * np.mean(ndata) print "mean=",np.mean(ndata) return np.column_stack((ndata,fullpage,m)) base = "300_winder_rast/imagesAndgTruth/" # draw a few results from single pages outfilename = "winder_full_rast_double_2col300_1.png" if not os.path.exists(outfilename): ndata = datfile.load(base+"Double_Column/300dpi/2col300_1/2col300_1.dat") plotit( make_lines(ndata,1.0), outfilename, title="Winder RAST DoubleColumn 2col300_1", fmt="-" ) outfilename = "winder_full_rast_double_pic_2col300_2.png" if not os.path.exists(outfilename): ndata = datfile.load(base+"Double_Column_Pictures/300dpi/2colpic300_2/2colpic300_2.dat") plotit( make_lines(ndata,.78), outfilename, title="Winder RAST Double Column Picture 2col300_2", fmt="-" ) outfilename = "winder_full_rast_double_sci_2col300_3.png" if not os.path.exists(outfilename): ndata = datfile.load(base+"Double_Column_Pictures_Scientific/300dpi/2colpic300_3/2colpic300_3.dat") plotit( make_lines(ndata,.56), outfilename, title="Winder RAST Double Column Scientific Picture 2col300_3", fmt="-" )
def get_winder_class_results(class_dir) : # load all .dat files corresponding to each class of image in the Winder # data set # gather all the datafiles from the fullpage winder fullpage_winder = datfile.find_all(class_dir) class_data = [] class_names = [] for datfilename in fullpage_winder : ndata = datfile.load(datfilename) basename = get_basename(datfilename) class_data.append( np.mean(ndata) ) class_names.append( basename.replace( "_"," ") ) return (class_data,class_names)
def load_all_datfiles( dirname ) : metrics = None for root,dirs,files in os.walk(dirname) : # print "root=",root # print "dirs=",dirs # print "files=",files for f in files : path=os.path.join(root,f) if path.endswith(".dat") : # print "path=",os.path.join(root,f) ndata = datfile.load( path ) # print ndata if metrics is None : metrics = ndata ndata = None else : metrics = np.append( metrics, ndata ) return metrics
def main() : if len(sys.argv) < 2 : usage() return metrics = None for datfile_name in sys.argv[1:] : print datfile_name ndata = datfile.load( datfile_name ) # print ndata if metrics is None : metrics = ndata ndata = None else : metrics = np.append( metrics, ndata ) print metrics print metrics.shape np.save('metrics.npy',metrics) make_histogram( metrics, "out.png" )