Exemple #1
0
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        dataset = Dataset.from_iterable([
            DatasetItem('no_label/q/1',
                        image=Image(path='q/1.JPEG', data=np.zeros(
                            (4, 3, 3)))),
            DatasetItem('a/b/c/2',
                        image=Image(path='a/b/c/2.bmp',
                                    data=np.zeros((3, 4, 3))),
                        annotations=[
                            Bbox(0, 2, 4, 2, label=0),
                            Points([
                                4.23, 4.32, 5.34, 4.45, 3.54, 3.56, 4.52, 3.51,
                                4.78, 3.34
                            ],
                                   label=0),
                        ]),
        ],
                                        categories=['a'])

        with TestDir() as test_dir:
            VggFace2Converter.convert(dataset, test_dir, save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'vgg_face2')

            compare_datasets(self,
                             dataset,
                             parsed_dataset,
                             require_images=True)
 def _image_converter(image):
     if callable(image) or isinstance(image, np.ndarray):
         image = Image(data=image)
     elif isinstance(image, str):
         image = Image(path=image)
     assert image is None or isinstance(image, Image), type(image)
     return image
    def test_ctors(self):
        with TestDir() as test_dir:
            path = osp.join(test_dir, 'path.png')
            image = np.ones([2, 4, 3])
            save_image(path, image)

            for args in [
                { 'data': image },
                { 'data': image, 'path': path },
                { 'data': image, 'path': path, 'size': (2, 4) },
                { 'data': image, 'ext': 'png' },
                { 'data': image, 'ext': 'png', 'size': (2, 4) },
                { 'data': lambda p: image },
                { 'data': lambda p: image, 'path': 'somepath' },
                { 'data': lambda p: image, 'ext': 'jpg' },
                { 'path': path },
                { 'path': path, 'data': load_image },
                { 'path': path, 'data': load_image, 'size': (2, 4) },
                { 'path': path, 'size': (2, 4) },
            ]:
                with self.subTest(**args):
                    img = Image(**args)
                    self.assertTrue(img.has_data)
                    np.testing.assert_array_equal(img.data, image)
                    self.assertEqual(img.size, tuple(image.shape[:2]))

            with self.subTest():
                img = Image(size=(2, 4))
                self.assertEqual(img.size, (2, 4))
Exemple #4
0
 def __iter__(self):
     return iter([
         DatasetItem(id='q/1', image=Image(path='q/1.JPEG',
             data=np.zeros((4, 3, 3)))),
         DatasetItem(id='a/b/c/2', image=Image(path='a/b/c/2.bmp',
             data=np.zeros((3, 4, 3)))),
     ])
Exemple #5
0
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        expected = Dataset.from_iterable([
            DatasetItem('1',
                        image=Image(path='1.JPEG', data=np.zeros((4, 3, 3))),
                        annotations=[
                            Bbox(0,
                                 4,
                                 4,
                                 8,
                                 label=0,
                                 attributes={
                                     'occluded': True,
                                     'visibility': 0.0,
                                     'ignored': False,
                                 }),
                        ]),
            DatasetItem(
                '2',
                image=Image(path='2.bmp', data=np.zeros((3, 4, 3))),
            ),
        ],
                                         categories=['a'])

        with TestDir() as test_dir:
            self._test_save_and_load(expected,
                                     partial(MotSeqGtConverter.convert,
                                             save_images=True),
                                     test_dir,
                                     require_images=True)
    def test_ctor_errors(self):
        with self.subTest('no data specified'):
            with self.assertRaisesRegex(Exception, "can not be empty"):
                Image(ext='jpg')

        with self.subTest('either path or ext'):
            with self.assertRaisesRegex(Exception, "both 'path' and 'ext'"):
                Image(path='somepath', ext='someext')
Exemple #7
0
    def test_can_keep_image_ext_on_resize(self):
        expected = Image(np.ones((8, 4)), ext='jpg')

        dataset = Dataset.from_iterable([
            DatasetItem(id=1, image=Image(np.ones((4, 2)), ext='jpg'))
        ])

        dataset.transform('resize', width=4, height=8)

        actual = dataset.get('1').image
        self.assertEqual(actual.ext, expected.ext)
        self.assertTrue(np.array_equal(actual.data, expected.data))
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        dataset = Dataset.from_iterable([
            DatasetItem(id='a/1', image=Image(path='a/1.JPEG',
                data=np.zeros((4, 3, 3)))),
            DatasetItem(id='b/c/d/2', image=Image(path='b/c/d/2.bmp',
                data=np.zeros((3, 4, 3)))),
        ], categories=[])

        with TestDir() as test_dir:
            self._test_save_and_load(dataset,
                partial(LabelMeConverter.convert, save_images=True),
                test_dir, require_images=True)
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        dataset = Dataset.from_iterable([
            DatasetItem('q/1', subset='train',
                image=Image(path='q/1.JPEG', data=np.zeros((4, 3, 3)))),
            DatasetItem('a/b/c/2', subset='valid',
                image=Image(path='a/b/c/2.bmp', data=np.zeros((3, 4, 3)))),
        ], categories=[])

        with TestDir() as test_dir:
            YoloConverter.convert(dataset, test_dir, save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'yolo')

            compare_datasets(self, dataset, parsed_dataset, require_images=True)
            def __iter__(self):
                return iter([
                    DatasetItem(id='q/1', image=Image(path='q/1.JPEG',
                        data=np.zeros((4, 3, 3)))),

                    DatasetItem(id='a/b/c/2', image=Image(
                             path='a/b/c/2.bmp', data=np.ones((1, 5, 3))
                         ), annotations=[
                        Mask(image=np.array([[1, 0, 0, 1, 0]]), label=0, id=0,
                            attributes={'is_crowd': True}),
                        Mask(image=np.array([[0, 1, 1, 0, 1]]), label=1, id=0,
                            attributes={'is_crowd': True}),
                    ]),
                ])
Exemple #11
0
    def _load_items(self, parsed):
        items = []
        for item_desc in parsed['items']:
            item_id = item_desc['id']

            image = None
            image_info = item_desc.get('image')
            if image_info:
                image_filename = image_info.get('path') or \
                    item_id + DatumaroPath.IMAGE_EXT
                image_path = osp.join(self._images_dir, self._subset,
                                      image_filename)
                if not osp.isfile(image_path):
                    # backward compatibility
                    old_image_path = osp.join(self._images_dir, image_filename)
                    if osp.isfile(old_image_path):
                        image_path = old_image_path

                image = Image(path=image_path, size=image_info.get('size'))

            point_cloud = None
            pcd_info = item_desc.get('point_cloud')
            if pcd_info:
                pcd_path = pcd_info.get('path')
                point_cloud = osp.join(self._pcd_dir, self._subset, pcd_path)

            related_images = None
            ri_info = item_desc.get('related_images')
            if ri_info:
                related_images = [
                    Image(size=ri.get('size'),
                          path=osp.join(self._related_images_dir, self._subset,
                                        item_id, ri.get('path')))
                    for ri in ri_info
                ]

            annotations = self._load_annotations(item_desc)

            item = DatasetItem(id=item_id,
                               subset=self._subset,
                               annotations=annotations,
                               image=image,
                               point_cloud=point_cloud,
                               related_images=related_images,
                               attributes=item_desc.get('attr'))

            items.append(item)

        return items
Exemple #12
0
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        expected = Dataset.from_iterable([
            DatasetItem(id='q/1',
                        image=Image(path='q/1.JPEG', data=np.zeros((4, 3, 3))),
                        attributes={'frame': 1}),
            DatasetItem(id='a/b/c/2',
                        image=Image(path='a/b/c/2.bmp',
                                    data=np.zeros((3, 4, 3))),
                        attributes={'frame': 2}),
        ])

        with TestDir() as test_dir:
            self._test_save_and_load(
                expected, partial(DatumaroConverter.convert, save_images=True),
                test_dir)
 def __iter__(self):
     return iter([
         DatasetItem(id='q/1',
                     image=Image(path='q/1.JPEG',
                                 data=np.zeros((4, 3, 3)))),
         DatasetItem(id='a/b/c/2',
                     image=Image(path='a/b/c/2.bmp',
                                 data=np.ones((1, 5, 3))),
                     annotations=[
                         Mask(np.array([[0, 0, 0, 1, 0]]),
                              label=self._label('a')),
                         Mask(np.array([[0, 1, 1, 0, 0]]),
                              label=self._label('b')),
                     ])
     ])
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        dataset = Dataset.from_iterable([
            DatasetItem(id='no_label/a', image=Image(path='a.JPEG',
                data=np.zeros((4, 3, 3)))),
            DatasetItem(id='no_label/b', image=Image(path='b.bmp',
                data=np.zeros((3, 4, 3)))),
        ], categories=[])

        with TestDir() as test_dir:
            ImagenetConverter.convert(dataset, test_dir, save_images=True)

            parsed_dataset = Dataset.import_from(test_dir, 'imagenet')

            compare_datasets(self, dataset, parsed_dataset,
                require_images=True)
    def test_inplace_save_writes_only_updated_data(self):
        expected = Dataset.from_iterable([
            DatasetItem(1, subset='train', image=np.ones((2, 4, 3))),
            DatasetItem(2, subset='train', image=np.ones((3, 2, 3))),
        ], categories=[])

        with TestDir() as path:
            dataset = Dataset.from_iterable([
                DatasetItem(1, subset='train', image=np.ones((2, 4, 3))),
                DatasetItem(2, subset='train',
                    image=Image(path='2.jpg', size=(3, 2))),
                DatasetItem(3, subset='valid', image=np.ones((2, 2, 3))),
            ], categories=[])
            dataset.export(path, 'yolo', save_images=True)

            dataset.put(DatasetItem(2, subset='train', image=np.ones((3, 2, 3))))
            dataset.remove(3, 'valid')
            dataset.save(save_images=True)

            self.assertEqual({'1.txt', '2.txt', '1.jpg', '2.jpg'},
                set(os.listdir(osp.join(path, 'obj_train_data'))))
            self.assertEqual(set(),
                set(os.listdir(osp.join(path, 'obj_valid_data'))))
            compare_datasets(self, expected, Dataset.import_from(path, 'yolo'),
                require_images=True)
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        expected = Dataset.from_iterable([
            DatasetItem('q/1', image=Image(path='q/1.JPEG',
                data=np.zeros((4, 3, 3))), attributes={'frame': 1}),
            DatasetItem('a/b/c/2', image=Image(path='a/b/c/2.bmp',
                data=np.zeros((3, 4, 3))), attributes={'frame': 2}),
        ], categories=[])

        with TestDir() as test_dir:
            self._test_save_and_load(expected,
                partial(CvatConverter.convert, save_images=True),
                test_dir, require_images=True)
            self.assertTrue(osp.isfile(
                osp.join(test_dir, 'images', 'q', '1.JPEG')))
            self.assertTrue(osp.isfile(
                osp.join(test_dir, 'images', 'a', 'b', 'c', '2.bmp')))
Exemple #17
0
    def test_inplace_save_writes_only_updated_data(self):
        expected = Dataset.from_iterable([
            DatasetItem(1, subset='train', image=np.ones((2, 4, 3))),
            DatasetItem(2, subset='train', image=np.ones((3, 2, 3))),
        ],
                                         categories=[])

        with TestDir() as path:
            dataset = Dataset.from_iterable([
                DatasetItem(1, subset='train', image=np.ones((2, 4, 3))),
                DatasetItem(
                    2, subset='train', image=Image(path='2.jpg', size=(3, 2))),
                DatasetItem(3, subset='valid', image=np.ones((2, 2, 3))),
            ],
                                            categories=[])
            dataset.export(path, 'wider_face', save_images=True)

            dataset.put(
                DatasetItem(2, subset='train', image=np.ones((3, 2, 3))))
            dataset.remove(3, 'valid')
            dataset.save(save_images=True)

            self.assertEqual({'1.jpg', '2.jpg'},
                             set(
                                 os.listdir(
                                     osp.join(path, 'WIDER_train', 'images',
                                              'no_label'))))
            self.assertEqual({'wider_face_train_bbx_gt.txt'},
                             set(os.listdir(osp.join(path,
                                                     'wider_face_split'))))
            compare_datasets(self,
                             expected,
                             Dataset.import_from(path, 'wider_face'),
                             require_images=True,
                             ignored_attrs=IGNORE_ALL)
Exemple #18
0
    def _load_polygons(self, items):
        polygons_dir = osp.join(self._annotations_dir,
                                MapillaryVistasPath.POLYGON_DIR)
        for item_path in glob.glob(osp.join(polygons_dir, '**', '*.json'),
                recursive=True):
            item_id = osp.splitext(osp.relpath(item_path, polygons_dir))[0]
            item = items.get(item_id)
            item_info = {}
            item_info = parse_json_file(item_path)

            image_size = self._get_image_size(item_info)
            if image_size and item.has_image:
                item.image = Image(path=item.image.path, size=image_size)

            polygons = item_info['objects']
            annotations = []
            for polygon in polygons:
                label = polygon['label']
                label_id = self._categories[AnnotationType.label].find(label)[0]
                if label_id is None:
                    label_id = self._categories[AnnotationType.label].add(label)

                points = [coord for point in polygon['polygon'] for coord in point]
                annotations.append(Polygon(label=label_id, points=points))

            if item is None:
                items[item_id] = DatasetItem(id=item_id, subset=self._subset,
                    annotations=annotations)
            else:
                item.annotations.extend(annotations)
    def test_can_save_and_load_with_arbitrary_extensions(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id='subset/1',
                        image=Image(data=np.ones((10, 10, 3)),
                                    path='subset/1.png')),
            DatasetItem(id='2',
                        image=Image(data=np.ones((4, 5, 3)), path='2.jpg')),
        ])

        with TestDir() as test_dir:
            save_image(osp.join(test_dir, '2.jpg'),
                       source_dataset.get('2').image.data)
            save_image(osp.join(test_dir, 'subset', '1.png'),
                       source_dataset.get('subset/1').image.data,
                       create_dir=True)

            self._test_can_save_and_load(source_dataset, test_dir)
Exemple #20
0
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        dataset = Dataset.from_iterable([
            DatasetItem(id='q/1',
                        image=Image(path='q/1.JPEG', data=np.zeros(
                            (4, 3, 3)))),
            DatasetItem(id='a/b/c/2',
                        image=Image(path='a/b/c/2.bmp',
                                    data=np.zeros((3, 4, 3)))),
        ])

        with TestDir() as test_dir:
            check_save_and_load(self,
                                dataset,
                                ImageDirConverter.convert,
                                test_dir,
                                importer='image_dir',
                                require_images=True)
Exemple #21
0
    def test_inplace_save_writes_only_updated_data_with_transforms(self):
        with TestDir() as path:
            expected = Dataset.from_iterable([
                DatasetItem(2, subset='test'),
                DatasetItem(3, subset='train', image=np.ones((2, 2, 3))),
                DatasetItem(4, subset='train', image=np.ones((2, 3, 3))),
                DatasetItem(5,
                            subset='test',
                            point_cloud=osp.join(path, 'point_clouds', 'test',
                                                 '5.pcd'),
                            related_images=[
                                Image(data=np.ones((3, 4, 3)),
                                      path=osp.join(path, 'test', '5',
                                                    'image_0.jpg')),
                                osp.join(path, 'test', '5', 'a', '5.png'),
                            ]),
            ])
            dataset = Dataset.from_iterable([
                DatasetItem(1, subset='a'),
                DatasetItem(2, subset='b'),
                DatasetItem(3, subset='c', image=np.ones((2, 2, 3))),
                DatasetItem(4, subset='d', image=np.ones((2, 3, 3))),
                DatasetItem(5,
                            subset='e',
                            point_cloud='5.pcd',
                            related_images=[
                                np.ones((3, 4, 3)),
                                'a/5.png',
                            ]),
            ])

            dataset.save(path, save_images=True)

            dataset.filter('/item[id >= 2]')
            dataset.transform('random_split',
                              splits=(('train', 0.5), ('test', 0.5)),
                              seed=42)
            dataset.save(save_images=True)

            self.assertEqual(
                {'images', 'annotations', 'point_clouds', 'related_images'},
                set(os.listdir(path)))
            self.assertEqual({'train.json', 'test.json'},
                             set(os.listdir(osp.join(path, 'annotations'))))
            self.assertEqual({'3.jpg', '4.jpg'},
                             set(os.listdir(osp.join(path, 'images',
                                                     'train'))))
            self.assertEqual({'train', 'c', 'd'},
                             set(os.listdir(osp.join(path, 'images'))))
            self.assertEqual(set(),
                             set(os.listdir(osp.join(path, 'images', 'c'))))
            self.assertEqual(set(),
                             set(os.listdir(osp.join(path, 'images', 'd'))))
            self.assertEqual(
                {'image_0.jpg'},
                set(os.listdir(osp.join(path, 'related_images', 'test', '5'))))
            compare_datasets_strict(self, expected, Dataset.load(path))
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        dataset = Dataset.from_iterable([
            DatasetItem(id='a/1',
                        image=Image(path='a/1.JPEG', data=np.zeros((4, 3, 3))),
                        annotations=[Label(0)]),
            DatasetItem(id='b/c/d/2',
                        image=Image(path='b/c/d/2.bmp',
                                    data=np.zeros((3, 4, 3))),
                        annotations=[Label(1)]),
        ],
                                        categories=['name0', 'name1'])

        with TestDir() as test_dir:
            LfwConverter.convert(dataset, test_dir, save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'lfw')

            compare_datasets(self,
                             dataset,
                             parsed_dataset,
                             require_images=True)
Exemple #23
0
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        expected = Dataset.from_iterable([
            DatasetItem(id='c/0001_c1s1_000000_00', image=Image(
                    path='c/0001_c1s1_0000_00.JPEG', data=np.zeros((4, 3, 3))),
                attributes={'camera_id': 0, 'person_id': '0001', 'track_id': 1,
                    'frame_id': 0, 'bbox_id': 0, 'query': False}
            ),
            DatasetItem(id='a/b/0002_c2s2_000001_00', image=Image(
                    path='a/b/0002_c2s2_0001_00.bmp', data=np.zeros((3, 4, 3))),
                attributes={'camera_id': 1, 'person_id': '0002', 'track_id': 2,
                    'frame_id': 1, 'bbox_id': 0, 'query': False}
            ),
        ])

        with TestDir() as test_dir:
            Market1501Converter.convert(expected, test_dir, save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'market1501')

            compare_datasets(self, expected, parsed_dataset,
                require_images=True)
Exemple #24
0
    def _load_instances_items(self):
        items = {}

        instances_dir = osp.join(self._annotations_dir, MapillaryVistasPath.INSTANCES_DIR)
        for instance_path in find_images(instances_dir, recursive=True):
            item_id = osp.splitext(osp.relpath(instance_path, instances_dir))[0]

            mask = load_image(instance_path, dtype=np.uint32)

            annotations = []
            for uval in np.unique(mask):
                label_id, instance_id = uval >> 8, uval & 255
                annotations.append(
                    Mask(
                        image=self._lazy_extract_mask(mask, uval),
                        label=label_id, id=instance_id
                    )
                )

            items[item_id] = DatasetItem(id=item_id, subset=self._subset,
                annotations=annotations)

        class_dir = osp.join(self._annotations_dir, MapillaryVistasPath.CLASS_DIR)
        for class_path in find_images(class_dir, recursive=True):
            item_id = osp.splitext(osp.relpath(class_path, class_dir))[0]
            if item_id in items:
                continue

            from PIL import Image as PILImage
            class_mask = np.array(PILImage.open(class_path))
            classes = np.unique(class_mask)

            annotations = []
            for label_id in classes:
                annotations.append(Mask(label=label_id,
                    image=self._lazy_extract_mask(class_mask, label_id))
                )

            items[item_id] = DatasetItem(id=item_id, subset=self._subset,
                annotations=annotations)

        for image_path in find_images(self._images_dir, recursive=True):
            item_id = osp.splitext(osp.relpath(image_path, self._images_dir))[0]
            image = Image(path=image_path)
            if item_id in items:
                items[item_id].image = image
            else:
                items[item_id] = DatasetItem(id=item_id, subset=self._subset,
                    image=image)

        self._load_polygons(items)
        return items.values()
Exemple #25
0
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        expected = Dataset.from_iterable([
            DatasetItem('q/1', image=Image(
                path='q/1.JPEG', data=np.zeros((4, 3, 3))),
                annotations=[
                    Mask(np.array([[0, 1, 0, 0, 0]]), label=0,
                        attributes={'track_id': 1}),
                ]
            ),
            DatasetItem('a/b/c/2', image=Image(
                path='a/b/c/2.bmp', data=np.zeros((3, 4, 3))),
                annotations=[
                    Mask(np.array([[0, 1, 0, 0, 0]]), label=0,
                        attributes={'track_id': 1}),
                ]
            ),
        ], categories=['a'])

        with TestDir() as test_dir:
            self._test_save_and_load(expected,
                partial(MotsPngConverter.convert, save_images=True),
                test_dir, require_images=True)
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        expected = Dataset.from_iterable([
            DatasetItem(id='q/1',
                        image=Image(path='q/1.JPEG', data=np.zeros(
                            (4, 3, 3)))),
            DatasetItem(id='a/b/c/2',
                        image=Image(path='a/b/c/2.bmp',
                                    data=np.zeros((3, 4, 3)))),
        ])

        for importer, converter in [
            ('icdar_word_recognition', IcdarWordRecognitionConverter),
            ('icdar_text_localization', IcdarTextLocalizationConverter),
            ('icdar_text_segmentation', IcdarTextSegmentationConverter),
        ]:
            with self.subTest(subformat=converter), TestDir() as test_dir:
                self._test_save_and_load(expected,
                                         partial(converter.convert,
                                                 save_images=True),
                                         test_dir,
                                         importer,
                                         require_images=True)
Exemple #27
0
    def _add_item(self, item_id, subset):
        image_path = self._image_paths_by_id.get(item_id)
        image = None
        if image_path is None:
            log.warning("Can't find image for item: %s. "
                "It should be in the '%s' directory" % (item_id,
                    OpenImagesPath.IMAGES_DIR))
        else:
            image = Image(path=image_path, size=self._image_meta.get(item_id))

        item = DatasetItem(id=item_id, image=image, subset=subset)
        self._items.append(item)
        return item
    def _load_items(self, path):
        anno_dict = parse_json_file(path)

        label_categories = self._categories[AnnotationType.label]
        tags = anno_dict.get('tags', [])
        for label in tags:
            label_name = label.get('name')
            label_idx = label_categories.find(label_name)[0]
            if label_idx is None:
                label_idx = label_categories.add(label_name)

        items = {}
        for id, asset in anno_dict.get('assets', {}).items():
            item_id = osp.splitext(asset.get('asset', {}).get('name'))[0]
            annotations = []
            for region in asset.get('regions', []):
                tags = region.get('tags', [])
                if not tags:
                    bbox = region.get('boundingBox', {})
                    if bbox:
                        annotations.append(
                            Bbox(float(bbox['left']),
                                 float(bbox['top']),
                                 float(bbox['width']),
                                 float(bbox['height']),
                                 attributes={'id': region.get('id')}))

                for tag in region.get('tags', []):
                    label_idx = label_categories.find(tag)[0]
                    if label_idx is None:
                        label_idx = label_categories.add(tag)

                    bbox = region.get('boundingBox', {})
                    if bbox:
                        annotations.append(
                            Bbox(float(bbox['left']),
                                 float(bbox['top']),
                                 float(bbox['width']),
                                 float(bbox['height']),
                                 label=label_idx,
                                 attributes={'id': region.get('id')}))

            items[item_id] = DatasetItem(
                id=item_id,
                subset=self._subset,
                attributes={'id': id},
                image=Image(path=osp.join(osp.dirname(path),
                                          asset.get('asset', {}).get('path'))),
                annotations=annotations)

        return items
    def test_can_save_dataset_to_correct_dir_with_correct_filename(self):
        dataset = Dataset.from_iterable([
            DatasetItem(id='dir/a', image=Image(path='dir/a.JPEG',
                data=np.zeros((4, 3, 3)))),
        ], categories=[])

        with TestDir() as test_dir:
            self._test_save_and_load(dataset,
                partial(LabelMeConverter.convert, save_images=True),
                test_dir, require_images=True)

            xml_dirpath = osp.join(test_dir, 'default/dir')
            self.assertEqual(os.listdir(osp.join(test_dir, 'default')), ['dir'])
            self.assertEqual(set(os.listdir(xml_dirpath)), {'a.xml', 'a.JPEG'})
Exemple #30
0
    def test_can_save_and_load_with_pointcloud(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id=1,
                        subset='test',
                        point_cloud='1.pcd',
                        related_images=[
                            Image(data=np.ones((5, 5, 3)), path='1/a.jpg'),
                            Image(data=np.ones((5, 4, 3)), path='1/b.jpg'),
                            Image(size=(5, 3), path='1/c.jpg'),
                            '1/d.jpg',
                        ],
                        annotations=[
                            Cuboid3d([2, 2, 2], [1, 1, 1], [3, 3, 1],
                                     id=1,
                                     group=1,
                                     label=0,
                                     attributes={'x': True})
                        ]),
        ],
                                               categories=['label'])

        with TestDir() as test_dir:
            target_dataset = Dataset.from_iterable([
                DatasetItem(
                    id=1,
                    subset='test',
                    point_cloud=osp.join(test_dir, 'point_clouds', 'test',
                                         '1.pcd'),
                    related_images=[
                        Image(data=np.ones((5, 5, 3)),
                              path=osp.join(test_dir, 'related_images', 'test',
                                            '1', 'image_0.jpg')),
                        Image(data=np.ones((5, 4, 3)),
                              path=osp.join(test_dir, 'related_images', 'test',
                                            '1', 'image_1.jpg')),
                        Image(size=(5, 3),
                              path=osp.join(test_dir, 'related_images', 'test',
                                            '1', 'image_2.jpg')),
                        osp.join(test_dir, 'related_images', 'test', '1',
                                 'image_3.jpg'),
                    ],
                    annotations=[
                        Cuboid3d([2, 2, 2], [1, 1, 1], [3, 3, 1],
                                 id=1,
                                 group=1,
                                 label=0,
                                 attributes={'x': True})
                    ]),
            ],
                                                   categories=['label'])
            self._test_save_and_load(source_dataset,
                                     partial(DatumaroConverter.convert,
                                             save_images=True),
                                     test_dir,
                                     target_dataset,
                                     compare=None,
                                     dimension=Dimensions.dim_3d)