def test_create_table(self): """ 测试创建表 :return: """ # 创建表之前确定表不存在 self.assertEqual(False, query_table(self.db, self.table_name)) # 创建表操作 create_table(self.db, self.np_array[0], self.np_array[1, 0]) # 创建表之后确定表已经存在 self.assertEqual(True, query_table(self.db, self.table_name))
def test_drop_table(self): """ 测试删除表 :return: """ # 创建表操作 create_table(self.db, self.np_array[0], self.np_array[1, 0]) # 创建表后能查到表的存在 self.assertEqual(True, query_table(self.db, self.table_name)) # 删除表 drop_table(self.db, self.table_name) # 删除表后查不到表 self.assertEqual(False, query_table(self.db, self.table_name))
def save_datas_with_labels(file_name, abnormal_rate): """ 存储已经由孤立森林学习过的带有标签的数据 :return:True or False """ cases = load_csv(file_name) # file_name是文件路径名 print("file name", file_name) # 文件名 title = file_name.split("/")[-1] print(type(title), title) isolate1 = Isolate('isolate', cases, rate=abnormal_rate) np_array = isolate1.merge_arrays() table_name = np_array[1, 0] db = connectdb() if not query_table(db, table_name): create_table(db, np_array[0], table_name) # 插入数据,表名为uuid if insert_train_datas(db, table_name, np_array[1:]): # 数据集列表存储表名(redis存储),断电就清空 redis_conn = get_redis_connection("default") redis_conn.sadd('data_set_name', title) # sv.data_set.append(title) # 存储数据集表名(磁盘存储),断电可恢复 save_dataset_name_to_file(title) # 存储文件与UUID对应关系到file2uuid表中 insert_file2uuid(title, table_name) return True return False
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2019/1/11 17:52 # @Author : zsj # @File : xgb_func_test.py # @Description: from db.mysql_operation import insert_train_datas, connectdb, query_table, create_table from isolate_model.base_function import load_csv, translate_to_xgboost_datas, save_xgboost_class, load_xgboost_class from isolate_model.isolate_class import Isolate from xgboost_model.xgboost_class import XGBoost cases = load_csv("../file/customs_cpu_test.csv") isolate1 = Isolate('2_7', cases) np_array = isolate1.merge_arrays() table_name = np_array[1, 0] db = connectdb() if not query_table(db, table_name): create_table(db, np_array[0], table_name) insert_train_datas(db, table_name, np_array[1:]) xgb1 = XGBoost(table_name) print(xgb1.name) save_xgboost_class(xgb1) pre = load_xgboost_class("982c78b5-435a-40b3-9a31-9fb5fbf8b16") print(pre.precision, pre.recall, pre.lasted_update)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2019/1/5 17:45 # @Author : zsj # @File : db_test.py # @Description: from db.mysql_operation import connectdb, create_table, query_table, query_datas, update_datas, delete_datas, \ drop_table, insert_train_datas, closedb from isolate_model.base_function import load_csv from isolate_model.isolate_class import Isolate cases = load_csv("../file/customs_msmq_test.csv") isolate1 = Isolate('2_7', cases) np_array = isolate1.merge_arrays() db = connectdb() table_name = np_array[1, 0] # 判断是否存在该表 is_exists = query_table(db, table_name) # 如果不存在则创建该表 if not is_exists: create_table(db, np_array[0], table_name) # 插入数据 insert_train_datas(db, table_name, np_array[1:]) result = query_datas(db, table_name) print(len(result))