Exemple #1
0
def fun_insert_stg(t_stock_ex):
		t_stock=t_stock_ex.split('.')[0]
		t_exchange=t_stock_ex.split('.')[1]
#	t_stock_ex=t_stock+'.'+t_exchange
		i_url=se.fun_url_alpha(t_stock_ex)
		r_response=se.fun_download_url(i_url)
		df_stock=se.fun_respone_2_df(r_response)
		df_stock["stock"]=t_stock
		df_stock["exchange"]=t_exchange
		i_tab_nme='stg_stock_alphavantage'
		i_action='IDF'
		db.fun_execreq(df_stock,i_tab_nme, i_action)
Exemple #2
0
def fun_daily_incr_aggr():
	lg.echo_msg("Inside the function fun_daily_aggr")
	t_str_qry="with t_sql as(SELECT exchange, stock, timestamp, high, low,        (high-low) daily_range,       open, close,       lag(close) OVER(Partition BY stock order by timestamp) as prev_close,       volume,       AVG(volume) OVER(ORDER BY stock, timestamp ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS avg_volume from (select distinct exchange, stock, timestamp, open, high, low, close, volume from stg_stock_alphavantage) sa) select exchange, stock, timestamp, high, low, daily_range,     open, close,        prev_close,       ((close-prev_close)*100/(case prev_close when 0 then 1 else prev_close END)) as per_growth,       (ln(case close when 0 then 1 else close end)-ln(case prev_close when 0 then 1 else prev_close end) )log_return,       volume,       avg_volume       from t_sql"
	lg.echo_msg("Calling function db.fun_execreq to execute Query:: "+t_str_qry)
	df_new=db.fun_execreq(t_str_qry,'', 'Q')
	t_str_qry="select exchange, stock, timestamp, high, low, daily_range, open, close, prev_close, per_growth, log_return, volume, avg_volume from t_stock_alphavantage"
	lg.echo_msg("Calling function db.fun_execreq to execute Query:: "+t_str_qry)
	df_table=db.fun_execreq(t_str_qry,'', 'Q')
	lg.echo_msg("Identify the changes")
	df_change=df_new.merge(df_table.assign(flg=1),how='left').loc[lambda x :x['flg'].isnull(),:]
	del df_change['flg']
	lg.echo_msg("New record count"+str(df_change.count()))
	i_tab_nme='t_stock_alphavantage'
	i_action='IDF'
	lg.echo_msg("Appenidng the change data")
	db.fun_execreq(df_change,i_tab_nme, i_action)
Exemple #3
0
def fun_getall_stock():
	lg.echo_msg("Inside the function fun_all_asx_stock")
	t_str_qry="select Exchange,Stock_Name,Stock,Sector from t_all_ASX_stock"
	lg.echo_msg("Calling function db.fun_execreq to execute Query:: "+t_str_qry)
	df=db.fun_execreq(t_str_qry,'', 'Q')
	lg.echo_msg(df)
	for t_stock_ex in df['stock']+"."+df['exchange']:
		fun_insert_stg(t_stock_ex)
		time.sleep(13)
Exemple #4
0
        lg.echo_msg('Inside Scheme Code validation statement')
        open(f_filename, 'wb').write(r.content)


start_dt = (datetime.datetime.now() -
            datetime.timedelta(days=365.2425 * 10)).strftime('%d-%b-%Y')
end_dt = datetime.datetime.now().strftime("%d-%b-%Y")
a_filealias = "_" + datetime.datetime.now().strftime("%Y%m%d") + 'mflst.txt'
p_filepath = os.getenv("MFDATASET")
p_curr_path = os.getcwd()
os.chdir(p_filepath)

l_qry_str = "select filename, date_loaded,download_status from t_file_control where download_status='SUCCESS'"
df_avail_data = pd.DataFrame(
    columns=['filename', 'date_loaded', 'download_status'])
df_avail_data = db.fun_execreq(l_qry_str, '', 'Q')

##Open fund
i_mf_cnt = 1
i_tp_cnt = 1  ##Indicate Open Ended fund
l_fin_list = []
while (i_mf_cnt != 3):
    i_mf_cnt = i_mf_cnt + 1
    #	echo_msg('Calling Open Fund Function'+str(i_mf_cnt))
    f_filename = str(i_mf_cnt) + '_' + str(i_tp_cnt) + a_filealias
    l_fin_list.append(f_filename)

df_mf_fresh_data = pd.DataFrame(l_fin_list, columns=["filename"])
df_mf_fresh_data['download_status'] = ''
df_mf_fresh_data['date_loaded'] = ''
Exemple #5
0
#############################################
# Author: Piyush Bijwal
# Comment: 
#############################################



import requests
import datetime
import time
import glob
import pandas as pd
import os
import logprint as lg
import db_postgres_access as db
import numpy as np


t_str_qry="with t_sql as(SELECT exchange, stock, timestamp, high, low,        (high-low) daily_range,       open, close,       lag(close) OVER(Partition BY stock order by timestamp) as prev_close,       volume,       AVG(volume) OVER(ORDER BY stock, timestamp ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS avg_volume from (select distinct exchange, stock, timestamp, open, high, low, close, volume from stg_stock_alphavantage) sa) select exchange, stock, timestamp, high, low, daily_range,     open, close,        prev_close,       ((close-prev_close)*100/(case prev_close when 0 then 1 else prev_close END)) as per_growth,       (ln(case close when 0 then 1 else close end)-ln(case prev_close when 0 then 1 else prev_close end) )log_return,       volume,       avg_volume       from t_sql"
df_stock=db.fun_execreq(t_str_qry,'', 'Q')

i_tab_nme='t_stock_alphavantage'
i_action='T'
df_stock=''
db.fun_execreq(df_stock,i_tab_nme, i_action)

i_action='IDF'
db.fun_execreq(df_stock,i_tab_nme, i_action)


Exemple #6
0
def fun_sel_stock(i_stockcode):
	lg.echo_msg("Inside the function fun_sel_stock")
	t_str_qry="select exchange, stock, timestamp, high, low, daily_range, open, close, prev_close, per_growth, log_return, volume, avg_volume from t_stock_alphavantage where stock='"+i_stockcode+"'"
	lg.echo_msg("Calling function db.fun_execreq to execute Query:: "+t_str_qry)
	df=db.fun_execreq(t_str_qry,'', 'Q')
	lg.echo_msg(df)
Exemple #7
0
import logprint as lg
import pandas as pd
import get_stock_extract as se
import db_postgres_access as db
import time

lg.echo_msg("Inside the function fun_ax_stock")
t_str_qry = "select distinct stock, timestamp, open, high, low, close,volume from stg_stock_alphavantage where stock='ANZ' order by timestamp"
lg.echo_msg("Calling function db.fun_execreq to execute Query:: " + t_str_qry)
df = db.fun_execreq(t_str_qry, '', 'Q')
df8 = df[:17]
df8
df8['prev1'] = df8.groupby(['stock'])['close'].shift(1)
df8['prev2'] = df8.groupby(['stock'])['close'].shift(2)
df8['prev3'] = df8.groupby(['stock'])['close'].shift(3)
df8['prev4'] = df8.groupby(['stock'])['close'].shift(4)
df8['prev5'] = df8.groupby(['stock'])['close'].shift(5)
df8['prev6'] = df8.groupby(['stock'])['close'].shift(6)
df8['prev7'] = df8.groupby(['stock'])['close'].shift(7)
df8