def test_construction():
    minimal_event_list = [{
        'scene_label': 'A'
    }, {
        'scene_label': 'A'
    }, {
        'scene_label': 'B'
    }, {
        'scene_label': 'B'
    }, {
        'scene_label': 'C'
    }]
    meta = MetaDataContainer(minimal_event_list)

    target_binary_matrix = numpy.array([
        [1., 0., 0.],  # 0
        [1., 0., 0.],  # 1
        [1., 0., 0.],  # 2
    ]).T

    # Test #1
    binary_matrix = OneHotEncoder(label_list=['A', 'B', 'C'],
                                  time_resolution=1.0).encode(
                                      label='A',
                                      length_seconds=3,
                                  )

    numpy.testing.assert_array_equal(target_binary_matrix, binary_matrix.data)
    nose.tools.assert_equal(binary_matrix.shape[0],
                            target_binary_matrix.shape[0])
    nose.tools.assert_equal(binary_matrix.shape[1],
                            target_binary_matrix.shape[1])

    target_binary_matrix = numpy.array([
        [0., 1., 0.],  # 0
        [0., 1., 0.],  # 1
        [0., 1., 0.],  # 2
    ]).T

    # Test #1
    binary_matrix = OneHotEncoder(label_list=['A', 'B', 'C'],
                                  time_resolution=1.0).encode(
                                      label='B',
                                      length_seconds=3,
                                  )

    numpy.testing.assert_array_equal(target_binary_matrix, binary_matrix.data)
    nose.tools.assert_equal(binary_matrix.shape[0],
                            target_binary_matrix.shape[0])
    nose.tools.assert_equal(binary_matrix.shape[1],
                            target_binary_matrix.shape[1])
def test_unknown_label():
    with dcase_util.utils.DisableLogger():
        OneHotEncoder(label_list=['A', 'B', 'C'],
                      time_resolution=1.0,
                      filename='test.cpickle').encode(
                          label='BB',
                          length_seconds=3,
                      )
Exemple #3
0
    def __init__(self, label_list=None, focus_field='scene_label', time_resolution=1.0,
                 length_frames=1, length_seconds=None, allow_unknown_labels=False,
                 **kwargs):
        """Constructor

        Parameters
        ----------
        label_list : list
            List of labels in correct order

        focus_field : str
            Field from the meta data item to be used in encoding

        time_resolution : float > 0.0
            Time resolution used when converting event into event roll.

        length_frames : int
            Length of encoded segment in frames

        length_seconds : float > 0.0
            Length of encoded segment in seconds

        allow_unknown_labels : bool
            Allow unknown labels in the decoding. If False, labels not in the given label_list will produce an error.
            Default value False

        """

        # Inject initialization parameters back to kwargs
        kwargs.update(
            {
                'label_list': label_list,
                'time_resolution': time_resolution,
                'length_frames': length_frames,
                'length_seconds': length_seconds,
                'allow_unknown_labels': allow_unknown_labels
            }
        )

        # Run super init to call init of mixins too
        super(OneHotEncodingProcessor, self).__init__(**kwargs)

        self.encoder = OneHotEncoder(**self.init_parameters)
        self.focus_field = focus_field
def test_log():
    with dcase_util.utils.DisableLogger():
        OneHotEncoder(label_list=['A', 'B', 'C'],
                      time_resolution=1.0,
                      filename='test.cpickle').log()
Exemple #5
0
class OneHotEncodingProcessor(Processor):
    """One hot encoding processor"""
    input_type = ProcessingChainItemType.METADATA  #: Input data type
    output_type = ProcessingChainItemType.DATA_CONTAINER  #: Output data type

    def __init__(self,
                 label_list=None,
                 focus_field='scene_label',
                 time_resolution=1.0,
                 length_frames=1,
                 length_seconds=None,
                 **kwargs):
        """Constructor

        Parameters
        ----------
        label_list : list
            List of labels in correct order

        focus_field : str
            Field from the meta data item to be used in encoding

        time_resolution : float > 0.0
            Time resolution used when converting event into event roll.

        length_frames : int
            Length of encoded segment in frames

        length_seconds : float > 0.0
            Length of encoded segment in seconds

        """

        # Inject initialization parameters back to kwargs
        kwargs.update({
            'label_list': label_list,
            'time_resolution': time_resolution,
            'length_frames': length_frames,
            'length_seconds': length_seconds
        })

        # Run super init to call init of mixins too
        super(OneHotEncodingProcessor, self).__init__(**kwargs)

        self.encoder = OneHotEncoder(**self.init_parameters)
        self.focus_field = focus_field

    def process(self,
                data=None,
                label=None,
                focus_field=None,
                length_frames=None,
                length_seconds=None,
                store_processing_chain=False,
                **kwargs):
        """Encode metadata

        Parameters
        ----------
        data : MetaDataContainer
            Meta data to encode. Give data in either through meta data container or directly with label parameter.

        label : str
            Class label to be hot

        focus_field : str
            Field from the meta data item to be used in encoding. If None, one given as parameter for class
            constructor is used.

        length_frames : int
            Length of encoded segment in frames. If None, one given as parameter for class constructor is used.

        length_seconds : float > 0.0
            Length of encoded segment in seconds. If None, one given as parameter for class constructor is used.

        store_processing_chain : bool
            Store processing chain to data container returned
            Default value False

        Returns
        -------
        BinaryMatrixContainer

        """

        if data is None and label is None:
            message = '{name}: Give data or label parameter.'.format(
                name=self.__class__.__name__)
            self.logger.exception(message)
            raise ValueError(message)

        from dcase_util.containers import MetaDataContainer

        if data is not None and not isinstance(data, MetaDataContainer):
            message = '{name}: Wrong input data type, type required [{input_type}].'.format(
                name=self.__class__.__name__, input_type=self.input_type)

            self.logger.exception(message)
            raise ValueError(message)

        if focus_field is None:
            focus_field = self.focus_field

        if data is not None and len(data) > 0 and label is None:
            label = data[0].get(focus_field)

        # Do processing
        self.encoder.encode(label=label,
                            length_frames=length_frames,
                            length_seconds=length_seconds)

        if store_processing_chain:
            # Get processing chain item
            processing_chain_item = self.get_processing_chain_item()

            if 'process_parameters' not in processing_chain_item:
                processing_chain_item['process_parameters'] = {}

            processing_chain_item['process_parameters'][
                'focus_field'] = focus_field
            processing_chain_item['process_parameters'][
                'length_frames'] = length_frames

            # Create processing chain to be stored in the container, and push chain item into it
            if hasattr(data, 'processing_chain'):
                data.processing_chain.push_processor(**processing_chain_item)
                processing_chain = data.processing_chain

            else:
                processing_chain = ProcessingChain().push_processor(
                    **processing_chain_item)
        else:
            processing_chain = None

        from dcase_util.containers import BinaryMatrix2DContainer
        container = BinaryMatrix2DContainer(
            data=self.encoder.data,
            label_list=self.encoder.label_list,
            time_resolution=self.encoder.time_resolution,
            processing_chain=processing_chain)

        return container