def main(): global app, view, nav_data nav_data = np.array([[0, 0, 0]]) lcmUtils.addSubscriber(".*_NAV$", node_nav_t, handleNavData) app = ConsoleApp() app.setupGlobals(globals()) app.showPythonConsole() view = app.createView() view.show() global d d = DebugData() d.addLine([0, 0, 0], [1, 0, 0], color=[0, 1, 0]) d.addSphere((0, 0, 0), radius=0.02, color=[1, 0, 0]) #vis.showPolyData(d.getPolyData(), 'my debug geometry', colorByName='RGB255') startSwarmVisualization() app.start()
def main(): global app, view, nav_data nav_data = np.array([[0, 0, 0]]) lcmUtils.addSubscriber(".*_NAV$", node_nav_t, handleNavData) app = ConsoleApp() app.setupGlobals(globals()) app.showPythonConsole() view = app.createView() view.show() global d d = DebugData() d.addLine([0,0,0], [1,0,0], color=[0,1,0]) d.addSphere((0,0,0), radius=0.02, color=[1,0,0]) #vis.showPolyData(d.getPolyData(), 'my debug geometry', colorByName='RGB255') startSwarmVisualization() app.start()
def main(): app = ConsoleApp() view = app.createView(useGrid=False) imageManager = cameraview.ImageManager() cameraView = cameraview.CameraView(imageManager, view) view.show() app.start()
class PositionGoalListener(object): def __init__(self): self.sub = lcmUtils.addSubscriber('JOINT_POSITION_GOAL', lcmdrc.robot_state_t, self.onJointPositionGoal) self.sub = lcmUtils.addSubscriber('SINGLE_JOINT_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal) lcmUtils.addSubscriber('COMMITTED_PLAN_PAUSE', lcmdrc.plan_control_t, self.onPause) self.debug = False if self.debug: self.app = ConsoleApp() self.view = self.app.createView() self.robotModel, self.jointController = roboturdf.loadRobotModel( 'robot model', self.view) self.jointController.setPose('ATLAS_COMMAND', commandStream._currentCommandedPose) self.view.show() self.timer = TimerCallback(targetFps=30) self.timer.callback = self.onDebug def onPause(self, msg): commandStream.stopStreaming() def onJointPositionGoal(self, msg): #lcmUtils.publish('ATLAS_COMMAND', msg) commandStream.startStreaming() pose = robotstate.convertStateMessageToDrakePose(msg) self.setGoalPose(pose) def setGoalPose(self, pose): commandStream.setGoalPose(pose) def onDebug(self): self.jointController.setPose('ATLAS_COMMAND', commandStream._currentCommandedPose) def onSingleJointPositionGoal(self, msg): jointPositionGoal = msg.joint_position jointName = msg.joint_name allowedJointNames = ['l_leg_aky', 'l_arm_lwy'] if not (jointName in allowedJointNames): print 'Position goals are not allowed for this joint' print 'ignoring this position goal' print 'use the sliders instead' return commandStream.setIndividualJointGoalPose(jointPositionGoal, jointName)
class DebugAtlasCommandListener(object): def __init__(self): self.app = ConsoleApp() self.view = self.app.createView() self.robotModel, self.jointController = roboturdf.loadRobotModel('robot model', self.view) self.jointController.setZeroPose() self.view.show() self.sub = lcmUtils.addSubscriber('ATLAS_COMMAND', lcmdrc.atlas_command_t, self.onAtlasCommand) self.sub.setSpeedLimit(60) def onAtlasCommand(self, msg): pose = atlasCommandToDrakePose(msg) self.jointController.setPose('ATLAS_COMMAND', pose)
class PositionGoalListener(object): def __init__(self): self.sub = lcmUtils.addSubscriber('JOINT_POSITION_GOAL', lcmdrc.robot_state_t, self.onJointPositionGoal) self.sub = lcmUtils.addSubscriber('SINGLE_JOINT_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal) lcmUtils.addSubscriber('COMMITTED_PLAN_PAUSE', lcmdrc.plan_control_t, self.onPause) self.debug = False if self.debug: self.app = ConsoleApp() self.view = self.app.createView() self.robotModel, self.jointController = roboturdf.loadRobotModel('robot model', self.view) self.jointController.setPose('ATLAS_COMMAND', commandStream._currentCommandedPose) self.view.show() self.timer = TimerCallback(targetFps=30) self.timer.callback = self.onDebug def onPause(self, msg): commandStream.stopStreaming() def onJointPositionGoal(self, msg): #lcmUtils.publish('ATLAS_COMMAND', msg) commandStream.startStreaming() pose = robotstate.convertStateMessageToDrakePose(msg) self.setGoalPose(pose) def setGoalPose(self, pose): commandStream.setGoalPose(pose) def onDebug(self): self.jointController.setPose('ATLAS_COMMAND', commandStream._currentCommandedPose) def onSingleJointPositionGoal(self, msg): jointPositionGoal = msg.joint_position jointName = msg.joint_name allowedJointNames = ['l_leg_aky','l_arm_lwy'] if not (jointName in allowedJointNames): print 'Position goals are not allowed for this joint' print 'ignoring this position goal' print 'use the sliders instead' return commandStream.setIndividualJointGoalPose(jointPositionGoal, jointName)
def main(): app = ConsoleApp() view = app.createView(useGrid=False) view.orientationMarkerWidget().Off() view.backgroundRenderer().SetBackground([0,0,0]) view.backgroundRenderer().SetBackground2([0,0,0]) cameraChannel = parseChannelArgument() imageManager = cameraview.ImageManager() imageManager.queue.addCameraStream(cameraChannel) imageManager.addImage(cameraChannel) cameraView = cameraview.CameraImageView(imageManager, cameraChannel, view=view) cameraView.eventFilterEnabled = False view.renderWindow().GetInteractor().SetInteractorStyle(vtk.vtkInteractorStyleImage()) view.show() app.start()
def main(): app = ConsoleApp() view = app.createView(useGrid=False) view.orientationMarkerWidget().Off() view.backgroundRenderer().SetBackground([0, 0, 0]) view.backgroundRenderer().SetBackground2([0, 0, 0]) cameraChannel = parseChannelArgument() imageManager = cameraview.ImageManager() imageManager.queue.addCameraStream(cameraChannel) imageManager.addImage(cameraChannel) cameraView = cameraview.CameraImageView(imageManager, cameraChannel, view=view) cameraView.eventFilterEnabled = False view.renderWindow().GetInteractor().SetInteractorStyle( vtk.vtkInteractorStyleImage()) view.show() app.start()
class Simulator(object): def __init__( self, percentObsDensity=20, endTime=40, randomizeControl=False, nonRandomWorld=False, circleRadius=0.7, worldScale=1.0, supervisedTrainingTime=500, autoInitialize=True, verbose=True, sarsaType="discrete", ): self.verbose = verbose self.randomizeControl = randomizeControl self.startSimTime = time.time() self.collisionThreshold = 1.3 self.randomSeed = 5 self.Sarsa_numInnerBins = 4 self.Sarsa_numOuterBins = 4 self.Sensor_rayLength = 8 self.sarsaType = sarsaType self.percentObsDensity = percentObsDensity self.supervisedTrainingTime = 10 self.learningRandomTime = 10 self.learningEvalTime = 10 self.defaultControllerTime = 10 self.nonRandomWorld = nonRandomWorld self.circleRadius = circleRadius self.worldScale = worldScale # create the visualizer object self.app = ConsoleApp() # view = app.createView(useGrid=False) self.view = self.app.createView(useGrid=False) self.initializeOptions() self.initializeColorMap() if autoInitialize: self.initialize() def initializeOptions(self): self.options = dict() self.options["Reward"] = dict() self.options["Reward"]["actionCost"] = 0.1 self.options["Reward"]["collisionPenalty"] = 100.0 self.options["Reward"]["raycastCost"] = 20.0 self.options["SARSA"] = dict() self.options["SARSA"]["type"] = "discrete" self.options["SARSA"]["lam"] = 0.7 self.options["SARSA"]["alphaStepSize"] = 0.2 self.options["SARSA"]["useQLearningUpdate"] = False self.options["SARSA"]["epsilonGreedy"] = 0.2 self.options["SARSA"]["burnInTime"] = 500 self.options["SARSA"]["epsilonGreedyExponent"] = 0.3 self.options["SARSA"]["exponentialDiscountFactor"] = 0.05 # so gamma = e^(-rho*dt) self.options["SARSA"]["numInnerBins"] = 5 self.options["SARSA"]["numOuterBins"] = 4 self.options["SARSA"]["binCutoff"] = 0.5 self.options["World"] = dict() self.options["World"]["obstaclesInnerFraction"] = 0.85 self.options["World"]["randomSeed"] = 40 self.options["World"]["percentObsDensity"] = 7.5 self.options["World"]["nonRandomWorld"] = True self.options["World"]["circleRadius"] = 1.75 self.options["World"]["scale"] = 1.0 self.options["Sensor"] = dict() self.options["Sensor"]["rayLength"] = 10 self.options["Sensor"]["numRays"] = 20 self.options["Car"] = dict() self.options["Car"]["velocity"] = 12 self.options["dt"] = 0.05 self.options["runTime"] = dict() self.options["runTime"]["supervisedTrainingTime"] = 10 self.options["runTime"]["learningRandomTime"] = 10 self.options["runTime"]["learningEvalTime"] = 10 self.options["runTime"]["defaultControllerTime"] = 10 def setDefaultOptions(self): defaultOptions = dict() defaultOptions["Reward"] = dict() defaultOptions["Reward"]["actionCost"] = 0.1 defaultOptions["Reward"]["collisionPenalty"] = 100.0 defaultOptions["Reward"]["raycastCost"] = 20.0 defaultOptions["SARSA"] = dict() defaultOptions["SARSA"]["type"] = "discrete" defaultOptions["SARSA"]["lam"] = 0.7 defaultOptions["SARSA"]["alphaStepSize"] = 0.2 defaultOptions["SARSA"]["useQLearningUpdate"] = False defaultOptions["SARSA"]["useSupervisedTraining"] = True defaultOptions["SARSA"]["epsilonGreedy"] = 0.2 defaultOptions["SARSA"]["burnInTime"] = 500 defaultOptions["SARSA"]["epsilonGreedyExponent"] = 0.3 defaultOptions["SARSA"]["exponentialDiscountFactor"] = 0.05 # so gamma = e^(-rho*dt) defaultOptions["SARSA"]["numInnerBins"] = 5 defaultOptions["SARSA"]["numOuterBins"] = 4 defaultOptions["SARSA"]["binCutoff"] = 0.5 defaultOptions["SARSA"]["forceDriveStraight"] = True defaultOptions["World"] = dict() defaultOptions["World"]["obstaclesInnerFraction"] = 0.85 defaultOptions["World"]["randomSeed"] = 40 defaultOptions["World"]["percentObsDensity"] = 7.5 defaultOptions["World"]["nonRandomWorld"] = True defaultOptions["World"]["circleRadius"] = 1.75 defaultOptions["World"]["scale"] = 1.0 defaultOptions["Sensor"] = dict() defaultOptions["Sensor"]["rayLength"] = 10 defaultOptions["Sensor"]["numRays"] = 20 defaultOptions["Car"] = dict() defaultOptions["Car"]["velocity"] = 12 defaultOptions["dt"] = 0.05 defaultOptions["runTime"] = dict() defaultOptions["runTime"]["supervisedTrainingTime"] = 10 defaultOptions["runTime"]["learningRandomTime"] = 10 defaultOptions["runTime"]["learningEvalTime"] = 10 defaultOptions["runTime"]["defaultControllerTime"] = 10 for k in defaultOptions: self.options.setdefault(k, defaultOptions[k]) for k in defaultOptions: if not isinstance(defaultOptions[k], dict): continue for j in defaultOptions[k]: self.options[k].setdefault(j, defaultOptions[k][j]) def initializeColorMap(self): self.colorMap = dict() self.colorMap["defaultRandom"] = [0, 0, 1] self.colorMap["learnedRandom"] = [1.0, 0.54901961, 0.0] # this is orange self.colorMap["learned"] = [0.58039216, 0.0, 0.82745098] # this is yellow self.colorMap["default"] = [0, 1, 0] def initialize(self): self.dt = self.options["dt"] self.controllerTypeOrder = ["defaultRandom", "learnedRandom", "learned", "default"] self.setDefaultOptions() self.Sensor = SensorObj( rayLength=self.options["Sensor"]["rayLength"], numRays=self.options["Sensor"]["numRays"] ) self.Controller = ControllerObj(self.Sensor) self.Car = CarPlant(controller=self.Controller, velocity=self.options["Car"]["velocity"]) self.Reward = Reward( self.Sensor, collisionThreshold=self.collisionThreshold, actionCost=self.options["Reward"]["actionCost"], collisionPenalty=self.options["Reward"]["collisionPenalty"], raycastCost=self.options["Reward"]["raycastCost"], ) self.setSARSA() # create the things needed for simulation om.removeFromObjectModel(om.findObjectByName("world")) self.world = World.buildCircleWorld( percentObsDensity=self.options["World"]["percentObsDensity"], circleRadius=self.options["World"]["circleRadius"], nonRandom=self.options["World"]["nonRandomWorld"], scale=self.options["World"]["scale"], randomSeed=self.options["World"]["randomSeed"], obstaclesInnerFraction=self.options["World"]["obstaclesInnerFraction"], ) om.removeFromObjectModel(om.findObjectByName("robot")) self.robot, self.frame = World.buildRobot() self.locator = World.buildCellLocator(self.world.visObj.polyData) self.Sensor.setLocator(self.locator) self.frame = self.robot.getChildFrame() self.frame.setProperty("Scale", 3) self.frame.setProperty("Edit", True) self.frame.widget.HandleRotationEnabledOff() rep = self.frame.widget.GetRepresentation() rep.SetTranslateAxisEnabled(2, False) rep.SetRotateAxisEnabled(0, False) rep.SetRotateAxisEnabled(1, False) self.supervisedTrainingTime = self.options["runTime"]["supervisedTrainingTime"] self.learningRandomTime = self.options["runTime"]["learningRandomTime"] self.learningEvalTime = self.options["runTime"]["learningEvalTime"] self.defaultControllerTime = self.options["runTime"]["defaultControllerTime"] self.Car.setFrame(self.frame) print "Finished initialization" def setSARSA(self, type=None): if type is None: type = self.options["SARSA"]["type"] if type == "discrete": self.Sarsa = SARSADiscrete( sensorObj=self.Sensor, actionSet=self.Controller.actionSet, collisionThreshold=self.collisionThreshold, alphaStepSize=self.options["SARSA"]["alphaStepSize"], useQLearningUpdate=self.options["SARSA"]["useQLearningUpdate"], lam=self.options["SARSA"]["lam"], numInnerBins=self.options["SARSA"]["numInnerBins"], numOuterBins=self.options["SARSA"]["numOuterBins"], binCutoff=self.options["SARSA"]["binCutoff"], burnInTime=self.options["SARSA"]["burnInTime"], epsilonGreedy=self.options["SARSA"]["epsilonGreedy"], epsilonGreedyExponent=self.options["SARSA"]["epsilonGreedyExponent"], forceDriveStraight=self.options["SARSA"]["forceDriveStraight"], ) elif type == "continuous": self.Sarsa = SARSAContinuous( sensorObj=self.Sensor, actionSet=self.Controller.actionSet, lam=self.options["SARSA"]["lam"], alphaStepSize=self.options["SARSA"]["alphaStepSize"], collisionThreshold=self.collisionThreshold, burnInTime=self.options["SARSA"]["burnInTime"], epsilonGreedy=self.options["SARSA"]["epsilonGreedy"], epsilonGreedyExponent=self.options["SARSA"]["epsilonGreedyExponent"], ) else: raise ValueError("sarsa type must be either discrete or continuous") def runSingleSimulation(self, updateQValues=True, controllerType="default", simulationCutoff=None): if self.verbose: print "using QValue based controller = ", useQValueController self.setCollisionFreeInitialState() currentCarState = np.copy(self.Car.state) nextCarState = np.copy(self.Car.state) self.setRobotFrameState(currentCarState[0], currentCarState[1], currentCarState[2]) currentRaycast = self.Sensor.raycastAll(self.frame) nextRaycast = np.zeros(self.Sensor.numRays) self.Sarsa.resetElibilityTraces() # record the reward data runData = dict() reward = 0 discountedReward = 0 avgReward = 0 startIdx = self.counter while self.counter < self.numTimesteps - 1: idx = self.counter currentTime = self.t[idx] self.stateOverTime[idx, :] = currentCarState x = self.stateOverTime[idx, 0] y = self.stateOverTime[idx, 1] theta = self.stateOverTime[idx, 2] self.setRobotFrameState(x, y, theta) # self.setRobotState(currentCarState[0], currentCarState[1], currentCarState[2]) currentRaycast = self.Sensor.raycastAll(self.frame) self.raycastData[idx, :] = currentRaycast S_current = (currentCarState, currentRaycast) if controllerType not in self.colorMap.keys(): print raise ValueError("controller of type " + controllerType + " not supported") if controllerType in ["default", "defaultRandom"]: if controllerType == "defaultRandom": controlInput, controlInputIdx = self.Controller.computeControlInput( currentCarState, currentTime, self.frame, raycastDistance=currentRaycast, randomize=True ) else: controlInput, controlInputIdx = self.Controller.computeControlInput( currentCarState, currentTime, self.frame, raycastDistance=currentRaycast, randomize=False ) if controllerType in ["learned", "learnedRandom"]: if controllerType == "learned": randomizeControl = False else: randomizeControl = True counterForGreedyDecay = self.counter - self.idxDict["learnedRandom"] controlInput, controlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy( S_current, counter=counterForGreedyDecay, randomize=randomizeControl ) self.emptyQValue[idx] = emptyQValue if emptyQValue and self.options["SARSA"]["useSupervisedTraining"]: controlInput, controlInputIdx = self.Controller.computeControlInput( currentCarState, currentTime, self.frame, raycastDistance=currentRaycast, randomize=False ) self.controlInputData[idx] = controlInput nextCarState = self.Car.simulateOneStep(controlInput=controlInput, dt=self.dt) # want to compute nextRaycast so we can do the SARSA algorithm x = nextCarState[0] y = nextCarState[1] theta = nextCarState[2] self.setRobotFrameState(x, y, theta) nextRaycast = self.Sensor.raycastAll(self.frame) # Compute the next control input S_next = (nextCarState, nextRaycast) if controllerType in ["default", "defaultRandom"]: if controllerType == "defaultRandom": nextControlInput, nextControlInputIdx = self.Controller.computeControlInput( nextCarState, currentTime, self.frame, raycastDistance=nextRaycast, randomize=True ) else: nextControlInput, nextControlInputIdx = self.Controller.computeControlInput( nextCarState, currentTime, self.frame, raycastDistance=nextRaycast, randomize=False ) if controllerType in ["learned", "learnedRandom"]: if controllerType == "learned": randomizeControl = False else: randomizeControl = True counterForGreedyDecay = self.counter - self.idxDict["learnedRandom"] nextControlInput, nextControlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy( S_next, counter=counterForGreedyDecay, randomize=randomizeControl ) if emptyQValue and self.options["SARSA"]["useSupervisedTraining"]: nextControlInput, nextControlInputIdx = self.Controller.computeControlInput( nextCarState, currentTime, self.frame, raycastDistance=nextRaycast, randomize=False ) # if useQValueController: # nextControlInput, nextControlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy(S_next) # # if not useQValueController or emptyQValue: # nextControlInput, nextControlInputIdx = self.Controller.computeControlInput(nextCarState, currentTime, self.frame, # raycastDistance=nextRaycast) # compute the reward reward = self.Reward.computeReward(S_next, controlInput) self.rewardData[idx] = reward discountedReward += self.Sarsa.gamma ** (self.counter - startIdx) * reward avgReward += reward ###### SARSA update if updateQValues: self.Sarsa.sarsaUpdate(S_current, controlInputIdx, reward, S_next, nextControlInputIdx) # bookkeeping currentCarState = nextCarState currentRaycast = nextRaycast self.counter += 1 # break if we are in collision if self.checkInCollision(nextRaycast): if self.verbose: print "Had a collision, terminating simulation" break if self.counter >= simulationCutoff: break # fill in the last state by hand self.stateOverTime[self.counter, :] = currentCarState self.raycastData[self.counter, :] = currentRaycast # return the total reward avgRewardNoCollisionPenalty = avgReward - reward avgReward = avgReward * 1.0 / max(1, self.counter - startIdx) avgRewardNoCollisionPenalty = avgRewardNoCollisionPenalty * 1.0 / max(1, self.counter - startIdx) # this extra multiplication is so that it is in the same "units" as avgReward runData["discountedReward"] = discountedReward * (1 - self.Sarsa.gamma) runData["avgReward"] = avgReward runData["avgRewardNoCollisionPenalty"] = avgRewardNoCollisionPenalty # this just makes sure we don't get stuck in an infinite loop. if startIdx == self.counter: self.counter += 1 return runData def setNumpyRandomSeed(self, seed=1): np.random.seed(seed) def runBatchSimulation(self, endTime=None, dt=0.05): # for use in playback self.dt = self.options["dt"] self.Sarsa.setDiscountFactor(dt) self.endTime = ( self.supervisedTrainingTime + self.learningRandomTime + self.learningEvalTime + self.defaultControllerTime ) self.t = np.arange(0.0, self.endTime, dt) maxNumTimesteps = np.size(self.t) self.stateOverTime = np.zeros((maxNumTimesteps + 1, 3)) self.raycastData = np.zeros((maxNumTimesteps + 1, self.Sensor.numRays)) self.controlInputData = np.zeros(maxNumTimesteps + 1) self.rewardData = np.zeros(maxNumTimesteps + 1) self.emptyQValue = np.zeros(maxNumTimesteps + 1, dtype="bool") self.numTimesteps = maxNumTimesteps self.controllerTypeOrder = ["defaultRandom", "learnedRandom", "learned", "default"] self.counter = 0 self.simulationData = [] self.initializeStatusBar() self.idxDict = dict() numRunsCounter = 0 # three while loops for different phases of simulation, supervisedTraining, learning, default self.idxDict["defaultRandom"] = self.counter loopStartIdx = self.counter simCutoff = min(loopStartIdx + self.supervisedTrainingTime / dt, self.numTimesteps) while (self.counter - loopStartIdx < self.supervisedTrainingTime / dt) and self.counter < self.numTimesteps: self.printStatusBar() useQValueController = False startIdx = self.counter runData = self.runSingleSimulation( updateQValues=True, controllerType="defaultRandom", simulationCutoff=simCutoff ) runData["startIdx"] = startIdx runData["controllerType"] = "defaultRandom" runData["duration"] = self.counter - runData["startIdx"] runData["endIdx"] = self.counter runData["runNumber"] = numRunsCounter numRunsCounter += 1 self.simulationData.append(runData) self.idxDict["learnedRandom"] = self.counter loopStartIdx = self.counter simCutoff = min(loopStartIdx + self.learningRandomTime / dt, self.numTimesteps) while (self.counter - loopStartIdx < self.learningRandomTime / dt) and self.counter < self.numTimesteps: self.printStatusBar() startIdx = self.counter runData = self.runSingleSimulation( updateQValues=True, controllerType="learnedRandom", simulationCutoff=simCutoff ) runData["startIdx"] = startIdx runData["controllerType"] = "learnedRandom" runData["duration"] = self.counter - runData["startIdx"] runData["endIdx"] = self.counter runData["runNumber"] = numRunsCounter numRunsCounter += 1 self.simulationData.append(runData) self.idxDict["learned"] = self.counter loopStartIdx = self.counter simCutoff = min(loopStartIdx + self.learningEvalTime / dt, self.numTimesteps) while (self.counter - loopStartIdx < self.learningEvalTime / dt) and self.counter < self.numTimesteps: self.printStatusBar() startIdx = self.counter runData = self.runSingleSimulation( updateQValues=False, controllerType="learned", simulationCutoff=simCutoff ) runData["startIdx"] = startIdx runData["controllerType"] = "learned" runData["duration"] = self.counter - runData["startIdx"] runData["endIdx"] = self.counter runData["runNumber"] = numRunsCounter numRunsCounter += 1 self.simulationData.append(runData) self.idxDict["default"] = self.counter loopStartIdx = self.counter simCutoff = min(loopStartIdx + self.defaultControllerTime / dt, self.numTimesteps) while (self.counter - loopStartIdx < self.defaultControllerTime / dt) and self.counter < self.numTimesteps - 1: self.printStatusBar() startIdx = self.counter runData = self.runSingleSimulation( updateQValues=False, controllerType="default", simulationCutoff=simCutoff ) runData["startIdx"] = startIdx runData["controllerType"] = "default" runData["duration"] = self.counter - runData["startIdx"] runData["endIdx"] = self.counter runData["runNumber"] = numRunsCounter numRunsCounter += 1 self.simulationData.append(runData) # BOOKKEEPING # truncate stateOverTime, raycastData, controlInputs to be the correct size self.numTimesteps = self.counter + 1 self.stateOverTime = self.stateOverTime[0 : self.counter + 1, :] self.raycastData = self.raycastData[0 : self.counter + 1, :] self.controlInputData = self.controlInputData[0 : self.counter + 1] self.rewardData = self.rewardData[0 : self.counter + 1] self.endTime = 1.0 * self.counter / self.numTimesteps * self.endTime def initializeStatusBar(self): self.numTicks = 10 self.nextTickComplete = 1.0 / float(self.numTicks) self.nextTickIdx = 1 print "Simulation percentage complete: (", self.numTicks, " # is complete)" def printStatusBar(self): fractionDone = float(self.counter) / float(self.numTimesteps) if fractionDone > self.nextTickComplete: self.nextTickIdx += 1 self.nextTickComplete += 1.0 / self.numTicks timeSoFar = time.time() - self.startSimTime estimatedTimeLeft_sec = (1 - fractionDone) * timeSoFar / fractionDone estimatedTimeLeft_minutes = estimatedTimeLeft_sec / 60.0 print "#" * self.nextTickIdx, "-" * ( self.numTicks - self.nextTickIdx ), "estimated", estimatedTimeLeft_minutes, "minutes left" def setCollisionFreeInitialState(self): tol = 5 while True: x = np.random.uniform(self.world.Xmin + tol, self.world.Xmax - tol, 1)[0] y = np.random.uniform(self.world.Ymin + tol, self.world.Ymax - tol, 1)[0] theta = np.random.uniform(0, 2 * np.pi, 1)[0] self.Car.setCarState(x, y, theta) self.setRobotFrameState(x, y, theta) if not self.checkInCollision(): break # if self.checkInCollision(): # print "IN COLLISION" # else: # print "COLLISION FREE" return x, y, theta def setupPlayback(self): self.timer = TimerCallback(targetFps=30) self.timer.callback = self.tick playButtonFps = 1.0 / self.dt print "playButtonFPS", playButtonFps self.playTimer = TimerCallback(targetFps=playButtonFps) self.playTimer.callback = self.playTimerCallback self.sliderMovedByPlayTimer = False panel = QtGui.QWidget() l = QtGui.QHBoxLayout(panel) playButton = QtGui.QPushButton("Play/Pause") playButton.connect("clicked()", self.onPlayButton) slider = QtGui.QSlider(QtCore.Qt.Horizontal) slider.connect("valueChanged(int)", self.onSliderChanged) self.sliderMax = self.numTimesteps slider.setMaximum(self.sliderMax) self.slider = slider l.addWidget(playButton) l.addWidget(slider) w = QtGui.QWidget() l = QtGui.QVBoxLayout(w) l.addWidget(self.view) l.addWidget(panel) w.showMaximized() self.frame.connectFrameModified(self.updateDrawIntersection) self.updateDrawIntersection(self.frame) applogic.resetCamera(viewDirection=[0.2, 0, -1]) self.view.showMaximized() self.view.raise_() panel = screengrabberpanel.ScreenGrabberPanel(self.view) panel.widget.show() elapsed = time.time() - self.startSimTime simRate = self.counter / elapsed print "Total run time", elapsed print "Ticks (Hz)", simRate print "Number of steps taken", self.counter self.app.start() def run(self, launchApp=True): self.counter = 1 self.runBatchSimulation() # self.Sarsa.plotWeights() if launchApp: self.setupPlayback() def updateDrawIntersection(self, frame): origin = np.array(frame.transform.GetPosition()) # print "origin is now at", origin d = DebugData() sliderIdx = self.slider.value controllerType = self.getControllerTypeFromCounter(sliderIdx) colorMaxRange = self.colorMap[controllerType] # if the QValue was empty then color it green if self.emptyQValue[sliderIdx]: colorMaxRange = [1, 1, 0] # this is yellow for i in xrange(self.Sensor.numRays): ray = self.Sensor.rays[:, i] rayTransformed = np.array(frame.transform.TransformNormal(ray)) # print "rayTransformed is", rayTransformed intersection = self.Sensor.raycast(self.locator, origin, origin + rayTransformed * self.Sensor.rayLength) if intersection is not None: d.addLine(origin, intersection, color=[1, 0, 0]) else: d.addLine(origin, origin + rayTransformed * self.Sensor.rayLength, color=colorMaxRange) vis.updatePolyData(d.getPolyData(), "rays", colorByName="RGB255") # camera = self.view.camera() # camera.SetFocalPoint(frame.transform.GetPosition()) # camera.SetPosition(frame.transform.TransformPoint((-30,0,10))) def getControllerTypeFromCounter(self, counter): name = self.controllerTypeOrder[0] for controllerType in self.controllerTypeOrder[1:]: if counter >= self.idxDict[controllerType]: name = controllerType return name def setRobotFrameState(self, x, y, theta): t = vtk.vtkTransform() t.Translate(x, y, 0.0) t.RotateZ(np.degrees(theta)) self.robot.getChildFrame().copyFrame(t) # returns true if we are in collision def checkInCollision(self, raycastDistance=None): if raycastDistance is None: self.setRobotFrameState(self.Car.state[0], self.Car.state[1], self.Car.state[2]) raycastDistance = self.Sensor.raycastAll(self.frame) if np.min(raycastDistance) < self.collisionThreshold: return True else: return False def tick(self): # print timer.elapsed # simulate(t.elapsed) x = np.sin(time.time()) y = np.cos(time.time()) self.setRobotFrameState(x, y, 0.0) if (time.time() - self.playTime) > self.endTime: self.playTimer.stop() def tick2(self): newtime = time.time() - self.playTime print time.time() - self.playTime x = np.sin(newtime) y = np.cos(newtime) self.setRobotFrameState(x, y, 0.0) # just increment the slider, stop the timer if we get to the end def playTimerCallback(self): self.sliderMovedByPlayTimer = True currentIdx = self.slider.value nextIdx = currentIdx + 1 self.slider.setSliderPosition(nextIdx) if currentIdx >= self.sliderMax: print "reached end of tape, stopping playTime" self.playTimer.stop() def onSliderChanged(self, value): if not self.sliderMovedByPlayTimer: self.playTimer.stop() numSteps = len(self.stateOverTime) idx = int(np.floor(numSteps * (1.0 * value / self.sliderMax))) idx = min(idx, numSteps - 1) x, y, theta = self.stateOverTime[idx] self.setRobotFrameState(x, y, theta) self.sliderMovedByPlayTimer = False def onPlayButton(self): if self.playTimer.isActive(): self.onPauseButton() return print "play" self.playTimer.start() self.playTime = time.time() def onPauseButton(self): print "pause" self.playTimer.stop() def computeRunStatistics(self): numRuns = len(self.simulationData) runStart = np.zeros(numRuns) runDuration = np.zeros(numRuns) grid = np.arange(1, numRuns + 1) discountedReward = np.zeros(numRuns) avgReward = np.zeros(numRuns) avgRewardNoCollisionPenalty = np.zeros(numRuns) idxMap = dict() for controllerType, color in self.colorMap.iteritems(): idxMap[controllerType] = np.zeros(numRuns, dtype=bool) for idx, val in enumerate(self.simulationData): runStart[idx] = val["startIdx"] runDuration[idx] = val["duration"] discountedReward[idx] = val["discountedReward"] avgReward[idx] = val["avgReward"] avgRewardNoCollisionPenalty[idx] = val["avgRewardNoCollisionPenalty"] controllerType = val["controllerType"] idxMap[controllerType][idx] = True def plotRunData(self, controllerTypeToPlot=None, showPlot=True, onlyLearned=False): if controllerTypeToPlot == None: controllerTypeToPlot = self.colorMap.keys() if onlyLearned: controllerTypeToPlot = ["learnedRandom", "learned"] numRuns = len(self.simulationData) runStart = np.zeros(numRuns) runDuration = np.zeros(numRuns) grid = np.arange(1, numRuns + 1) discountedReward = np.zeros(numRuns) avgReward = np.zeros(numRuns) avgRewardNoCollisionPenalty = np.zeros(numRuns) idxMap = dict() for controllerType, color in self.colorMap.iteritems(): idxMap[controllerType] = np.zeros(numRuns, dtype=bool) for idx, val in enumerate(self.simulationData): runStart[idx] = val["startIdx"] runDuration[idx] = val["duration"] discountedReward[idx] = val["discountedReward"] avgReward[idx] = val["avgReward"] avgRewardNoCollisionPenalty[idx] = val["avgRewardNoCollisionPenalty"] controllerType = val["controllerType"] idxMap[controllerType][idx] = True # usedQValueController[idx] = (val['controllerType'] == "QValue") # usedDefaultController[idx] = (val['controllerType'] == "default") # usedDefaultRandomController[idx] = (val['controllerType'] == "defaultRandom") # usedQValueRandomController[idx] = (val['controllerType'] == "QValueRandom") self.runStatistics = dict() dataMap = { "duration": runDuration, "discountedReward": discountedReward, "avgReward": avgReward, "avgRewardNoCollisionPenalty": avgRewardNoCollisionPenalty, } def computeRunStatistics(dataMap): for controllerType, idx in idxMap.iteritems(): d = dict() for dataName, dataSet in dataMap.iteritems(): # average the appropriate values in dataset d[dataName] = np.sum(dataSet[idx]) / (1.0 * np.size(dataSet[idx])) self.runStatistics[controllerType] = d computeRunStatistics(dataMap) if not showPlot: return plt.figure() # # idxDefaultRandom = np.where(usedDefaultRandomController==True)[0] # idxQValueController = np.where(usedQValueController==True)[0] # idxQValueControllerRandom = np.where(usedQValueControllerRandom==True)[0] # idxDefault = np.where(usedDefaultController==True)[0] # # plotData = dict() # plotData['defaultRandom'] = {'idx': idxDefaultRandom, 'color': 'b'} # plotData['QValue'] = {'idx': idxQValueController, 'color': 'y'} # plotData['default'] = {'idx': idxDefault, 'color': 'g'} def scatterPlot(dataToPlot): for controllerType in controllerTypeToPlot: idx = idxMap[controllerType] plt.scatter(grid[idx], dataToPlot[idx], color=self.colorMap[controllerType]) def barPlot(dataName): plt.title(dataName) barWidth = 0.5 barCounter = 0 index = np.arange(len(controllerTypeToPlot)) for controllerType in controllerTypeToPlot: val = self.runStatistics[controllerType] plt.bar(barCounter, val[dataName], barWidth, color=self.colorMap[controllerType], label=controllerType) barCounter += 1 plt.xticks(index + barWidth / 2.0, controllerTypeToPlot) plt.subplot(4, 1, 1) plt.title("run duration") scatterPlot(runDuration) # for controllerType, idx in idxMap.iteritems(): # plt.scatter(grid[idx], runDuration[idx], color=self.colorMap[controllerType]) # plt.scatter(runStart[idxDefaultRandom], runDuration[idxDefaultRandom], color='b') # plt.scatter(runStart[idxQValueController], runDuration[idxQValueController], color='y') # plt.scatter(runStart[idxDefault], runDuration[idxDefault], color='g') plt.xlabel("run #") plt.ylabel("episode duration") plt.subplot(2, 1, 2) plt.title("discounted reward") scatterPlot(discountedReward) # for key, val in plotData.iteritems(): # plt.scatter(grid[idx], discountedReward[idx], color=self.colorMap[controllerType]) # plt.subplot(3,1,3) # plt.title("average reward") # scatterPlot(avgReward) # for key, val in plotData.iteritems(): # plt.scatter(grid[val['idx']],avgReward[val['idx']], color=val['color']) # plt.subplot(4,1,4) # plt.title("average reward no collision penalty") # scatterPlot(avgRewardNoCollisionPenalty) # # for key, val in plotData.iteritems(): # # plt.scatter(grid[val['idx']],avgRewardNoCollisionPenalty[val['idx']], color=val['color']) ## plot summary statistics plt.figure() plt.subplot(2, 1, 1) barPlot("duration") plt.subplot(2, 1, 2) barPlot("discountedReward") # plt.subplot(3,1,3) # barPlot("avgReward") # # plt.subplot(4,1,4) # barPlot("avgRewardNoCollisionPenalty") plt.show() def plotMultipleRunData(self, simList, toPlot=["duration", "discountedReward"], controllerType="learned"): plt.figure() numPlots = len(toPlot) grid = np.arange(len(simList)) def plot(fieldToPlot, plotNum): plt.subplot(numPlots, 1, plotNum) plt.title(fieldToPlot) val = 0 * grid barWidth = 0.5 barCounter = 0 for idx, sim in enumerate(simList): value = sim.runStatistics[controllerType][fieldToPlot] plt.bar(idx, value, barWidth) counter = 1 for fieldToPlot in toPlot: plot(fieldToPlot, counter) counter += 1 plt.show() def saveToFile(self, filename): # should also save the run data if it is available, i.e. stateOverTime, rewardOverTime filename = "data/" + filename + ".out" my_shelf = shelve.open(filename, "n") my_shelf["options"] = self.options if self.options["SARSA"]["type"] == "discrete": my_shelf["SARSA_QValues"] = self.Sarsa.QValues my_shelf["simulationData"] = self.simulationData my_shelf["stateOverTime"] = self.stateOverTime my_shelf["raycastData"] = self.raycastData my_shelf["controlInputData"] = self.controlInputData my_shelf["emptyQValue"] = self.emptyQValue my_shelf["numTimesteps"] = self.numTimesteps my_shelf["idxDict"] = self.idxDict my_shelf["counter"] = self.counter my_shelf.close() @staticmethod def loadFromFile(filename): filename = "data/" + filename + ".out" sim = Simulator(autoInitialize=False, verbose=False) my_shelf = shelve.open(filename) sim.options = my_shelf["options"] sim.initialize() if sim.options["SARSA"]["type"] == "discrete": sim.Sarsa.QValues = np.array(my_shelf["SARSA_QValues"]) sim.simulationData = my_shelf["simulationData"] # sim.runStatistics = my_shelf['runStatistics'] sim.stateOverTime = np.array(my_shelf["stateOverTime"]) sim.raycastData = np.array(my_shelf["raycastData"]) sim.controlInputData = np.array(my_shelf["controlInputData"]) sim.emptyQValue = np.array(my_shelf["emptyQValue"]) sim.numTimesteps = my_shelf["numTimesteps"] sim.idxDict = my_shelf["idxDict"] sim.counter = my_shelf["counter"] my_shelf.close() return sim
class Simulator(object): def __init__(self, percentObsDensity=20, endTime=40, randomizeControl=False, nonRandomWorld=False, circleRadius=0.7, worldScale=1.0, supervisedTrainingTime=500, autoInitialize=True, verbose=True, sarsaType="discrete"): self.verbose = verbose self.randomizeControl = randomizeControl self.startSimTime = time.time() self.collisionThreshold = 1.3 self.randomSeed = 5 self.Sarsa_numInnerBins = 4 self.Sarsa_numOuterBins = 4 self.Sensor_rayLength = 8 self.sarsaType = sarsaType self.percentObsDensity = percentObsDensity self.supervisedTrainingTime = 10 self.learningRandomTime = 10 self.learningEvalTime = 10 self.defaultControllerTime = 10 self.nonRandomWorld = nonRandomWorld self.circleRadius = circleRadius self.worldScale = worldScale # create the visualizer object self.app = ConsoleApp() # view = app.createView(useGrid=False) self.view = self.app.createView(useGrid=False) self.initializeOptions() self.initializeColorMap() if autoInitialize: self.initialize() def initializeOptions(self): self.options = dict() self.options['Reward'] = dict() self.options['Reward']['actionCost'] = 0.1 self.options['Reward']['collisionPenalty'] = 100.0 self.options['Reward']['raycastCost'] = 20.0 self.options['SARSA'] = dict() self.options['SARSA']['type'] = "discrete" self.options['SARSA']['lam'] = 0.7 self.options['SARSA']['alphaStepSize'] = 0.2 self.options['SARSA']['useQLearningUpdate'] = False self.options['SARSA']['epsilonGreedy'] = 0.2 self.options['SARSA']['burnInTime'] = 500 self.options['SARSA']['epsilonGreedyExponent'] = 0.3 self.options['SARSA'][ 'exponentialDiscountFactor'] = 0.05 #so gamma = e^(-rho*dt) self.options['SARSA']['numInnerBins'] = 5 self.options['SARSA']['numOuterBins'] = 4 self.options['SARSA']['binCutoff'] = 0.5 self.options['World'] = dict() self.options['World']['obstaclesInnerFraction'] = 0.85 self.options['World']['randomSeed'] = 40 self.options['World']['percentObsDensity'] = 7.5 self.options['World']['nonRandomWorld'] = True self.options['World']['circleRadius'] = 1.75 self.options['World']['scale'] = 1.0 self.options['Sensor'] = dict() self.options['Sensor']['rayLength'] = 10 self.options['Sensor']['numRays'] = 20 self.options['Car'] = dict() self.options['Car']['velocity'] = 12 self.options['dt'] = 0.05 self.options['runTime'] = dict() self.options['runTime']['supervisedTrainingTime'] = 10 self.options['runTime']['learningRandomTime'] = 10 self.options['runTime']['learningEvalTime'] = 10 self.options['runTime']['defaultControllerTime'] = 10 def setDefaultOptions(self): defaultOptions = dict() defaultOptions['Reward'] = dict() defaultOptions['Reward']['actionCost'] = 0.1 defaultOptions['Reward']['collisionPenalty'] = 100.0 defaultOptions['Reward']['raycastCost'] = 20.0 defaultOptions['SARSA'] = dict() defaultOptions['SARSA']['type'] = "discrete" defaultOptions['SARSA']['lam'] = 0.7 defaultOptions['SARSA']['alphaStepSize'] = 0.2 defaultOptions['SARSA']['useQLearningUpdate'] = False defaultOptions['SARSA']['useSupervisedTraining'] = True defaultOptions['SARSA']['epsilonGreedy'] = 0.2 defaultOptions['SARSA']['burnInTime'] = 500 defaultOptions['SARSA']['epsilonGreedyExponent'] = 0.3 defaultOptions['SARSA'][ 'exponentialDiscountFactor'] = 0.05 #so gamma = e^(-rho*dt) defaultOptions['SARSA']['numInnerBins'] = 5 defaultOptions['SARSA']['numOuterBins'] = 4 defaultOptions['SARSA']['binCutoff'] = 0.5 defaultOptions['SARSA']['forceDriveStraight'] = True defaultOptions['World'] = dict() defaultOptions['World']['obstaclesInnerFraction'] = 0.85 defaultOptions['World']['randomSeed'] = 40 defaultOptions['World']['percentObsDensity'] = 7.5 defaultOptions['World']['nonRandomWorld'] = True defaultOptions['World']['circleRadius'] = 1.75 defaultOptions['World']['scale'] = 1.0 defaultOptions['Sensor'] = dict() defaultOptions['Sensor']['rayLength'] = 10 defaultOptions['Sensor']['numRays'] = 20 defaultOptions['Car'] = dict() defaultOptions['Car']['velocity'] = 12 defaultOptions['dt'] = 0.05 defaultOptions['runTime'] = dict() defaultOptions['runTime']['supervisedTrainingTime'] = 10 defaultOptions['runTime']['learningRandomTime'] = 10 defaultOptions['runTime']['learningEvalTime'] = 10 defaultOptions['runTime']['defaultControllerTime'] = 10 for k in defaultOptions: self.options.setdefault(k, defaultOptions[k]) for k in defaultOptions: if not isinstance(defaultOptions[k], dict): continue for j in defaultOptions[k]: self.options[k].setdefault(j, defaultOptions[k][j]) def initializeColorMap(self): self.colorMap = dict() self.colorMap['defaultRandom'] = [0, 0, 1] self.colorMap['learnedRandom'] = [1.0, 0.54901961, 0.] # this is orange self.colorMap['learned'] = [0.58039216, 0.0, 0.82745098] # this is yellow self.colorMap['default'] = [0, 1, 0] def initialize(self): self.dt = self.options['dt'] self.controllerTypeOrder = [ 'defaultRandom', 'learnedRandom', 'learned', 'default' ] self.setDefaultOptions() self.Sensor = SensorObj(rayLength=self.options['Sensor']['rayLength'], numRays=self.options['Sensor']['numRays']) self.Controller = ControllerObj(self.Sensor) self.Car = CarPlant(controller=self.Controller, velocity=self.options['Car']['velocity']) self.Reward = Reward( self.Sensor, collisionThreshold=self.collisionThreshold, actionCost=self.options['Reward']['actionCost'], collisionPenalty=self.options['Reward']['collisionPenalty'], raycastCost=self.options['Reward']['raycastCost']) self.setSARSA() # create the things needed for simulation om.removeFromObjectModel(om.findObjectByName('world')) self.world = World.buildCircleWorld( percentObsDensity=self.options['World']['percentObsDensity'], circleRadius=self.options['World']['circleRadius'], nonRandom=self.options['World']['nonRandomWorld'], scale=self.options['World']['scale'], randomSeed=self.options['World']['randomSeed'], obstaclesInnerFraction=self.options['World'] ['obstaclesInnerFraction']) om.removeFromObjectModel(om.findObjectByName('robot')) self.robot, self.frame = World.buildRobot() self.locator = World.buildCellLocator(self.world.visObj.polyData) self.Sensor.setLocator(self.locator) self.frame = self.robot.getChildFrame() self.frame.setProperty('Scale', 3) self.frame.setProperty('Edit', True) self.frame.widget.HandleRotationEnabledOff() rep = self.frame.widget.GetRepresentation() rep.SetTranslateAxisEnabled(2, False) rep.SetRotateAxisEnabled(0, False) rep.SetRotateAxisEnabled(1, False) self.supervisedTrainingTime = self.options['runTime'][ 'supervisedTrainingTime'] self.learningRandomTime = self.options['runTime']['learningRandomTime'] self.learningEvalTime = self.options['runTime']['learningEvalTime'] self.defaultControllerTime = self.options['runTime'][ 'defaultControllerTime'] self.Car.setFrame(self.frame) print "Finished initialization" def setSARSA(self, type=None): if type is None: type = self.options['SARSA']['type'] if type == "discrete": self.Sarsa = SARSADiscrete( sensorObj=self.Sensor, actionSet=self.Controller.actionSet, collisionThreshold=self.collisionThreshold, alphaStepSize=self.options['SARSA']['alphaStepSize'], useQLearningUpdate=self.options['SARSA']['useQLearningUpdate'], lam=self.options['SARSA']['lam'], numInnerBins=self.options['SARSA']['numInnerBins'], numOuterBins=self.options['SARSA']['numOuterBins'], binCutoff=self.options['SARSA']['binCutoff'], burnInTime=self.options['SARSA']['burnInTime'], epsilonGreedy=self.options['SARSA']['epsilonGreedy'], epsilonGreedyExponent=self.options['SARSA'] ['epsilonGreedyExponent'], forceDriveStraight=self.options['SARSA']['forceDriveStraight']) elif type == "continuous": self.Sarsa = SARSAContinuous( sensorObj=self.Sensor, actionSet=self.Controller.actionSet, lam=self.options['SARSA']['lam'], alphaStepSize=self.options['SARSA']['alphaStepSize'], collisionThreshold=self.collisionThreshold, burnInTime=self.options['SARSA']['burnInTime'], epsilonGreedy=self.options['SARSA']['epsilonGreedy'], epsilonGreedyExponent=self.options['SARSA'] ['epsilonGreedyExponent']) else: raise ValueError( "sarsa type must be either discrete or continuous") def runSingleSimulation(self, updateQValues=True, controllerType='default', simulationCutoff=None): if self.verbose: print "using QValue based controller = ", useQValueController self.setCollisionFreeInitialState() currentCarState = np.copy(self.Car.state) nextCarState = np.copy(self.Car.state) self.setRobotFrameState(currentCarState[0], currentCarState[1], currentCarState[2]) currentRaycast = self.Sensor.raycastAll(self.frame) nextRaycast = np.zeros(self.Sensor.numRays) self.Sarsa.resetElibilityTraces() # record the reward data runData = dict() reward = 0 discountedReward = 0 avgReward = 0 startIdx = self.counter while (self.counter < self.numTimesteps - 1): idx = self.counter currentTime = self.t[idx] self.stateOverTime[idx, :] = currentCarState x = self.stateOverTime[idx, 0] y = self.stateOverTime[idx, 1] theta = self.stateOverTime[idx, 2] self.setRobotFrameState(x, y, theta) # self.setRobotState(currentCarState[0], currentCarState[1], currentCarState[2]) currentRaycast = self.Sensor.raycastAll(self.frame) self.raycastData[idx, :] = currentRaycast S_current = (currentCarState, currentRaycast) if controllerType not in self.colorMap.keys(): print raise ValueError("controller of type " + controllerType + " not supported") if controllerType in ["default", "defaultRandom"]: if controllerType == "defaultRandom": controlInput, controlInputIdx = self.Controller.computeControlInput( currentCarState, currentTime, self.frame, raycastDistance=currentRaycast, randomize=True) else: controlInput, controlInputIdx = self.Controller.computeControlInput( currentCarState, currentTime, self.frame, raycastDistance=currentRaycast, randomize=False) if controllerType in ["learned", "learnedRandom"]: if controllerType == "learned": randomizeControl = False else: randomizeControl = True counterForGreedyDecay = self.counter - self.idxDict[ "learnedRandom"] controlInput, controlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy( S_current, counter=counterForGreedyDecay, randomize=randomizeControl) self.emptyQValue[idx] = emptyQValue if emptyQValue and self.options['SARSA'][ 'useSupervisedTraining']: controlInput, controlInputIdx = self.Controller.computeControlInput( currentCarState, currentTime, self.frame, raycastDistance=currentRaycast, randomize=False) self.controlInputData[idx] = controlInput nextCarState = self.Car.simulateOneStep(controlInput=controlInput, dt=self.dt) # want to compute nextRaycast so we can do the SARSA algorithm x = nextCarState[0] y = nextCarState[1] theta = nextCarState[2] self.setRobotFrameState(x, y, theta) nextRaycast = self.Sensor.raycastAll(self.frame) # Compute the next control input S_next = (nextCarState, nextRaycast) if controllerType in ["default", "defaultRandom"]: if controllerType == "defaultRandom": nextControlInput, nextControlInputIdx = self.Controller.computeControlInput( nextCarState, currentTime, self.frame, raycastDistance=nextRaycast, randomize=True) else: nextControlInput, nextControlInputIdx = self.Controller.computeControlInput( nextCarState, currentTime, self.frame, raycastDistance=nextRaycast, randomize=False) if controllerType in ["learned", "learnedRandom"]: if controllerType == "learned": randomizeControl = False else: randomizeControl = True counterForGreedyDecay = self.counter - self.idxDict[ "learnedRandom"] nextControlInput, nextControlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy( S_next, counter=counterForGreedyDecay, randomize=randomizeControl) if emptyQValue and self.options['SARSA'][ 'useSupervisedTraining']: nextControlInput, nextControlInputIdx = self.Controller.computeControlInput( nextCarState, currentTime, self.frame, raycastDistance=nextRaycast, randomize=False) # if useQValueController: # nextControlInput, nextControlInputIdx, emptyQValue = self.Sarsa.computeGreedyControlPolicy(S_next) # # if not useQValueController or emptyQValue: # nextControlInput, nextControlInputIdx = self.Controller.computeControlInput(nextCarState, currentTime, self.frame, # raycastDistance=nextRaycast) # compute the reward reward = self.Reward.computeReward(S_next, controlInput) self.rewardData[idx] = reward discountedReward += self.Sarsa.gamma**(self.counter - startIdx) * reward avgReward += reward ###### SARSA update if updateQValues: self.Sarsa.sarsaUpdate(S_current, controlInputIdx, reward, S_next, nextControlInputIdx) #bookkeeping currentCarState = nextCarState currentRaycast = nextRaycast self.counter += 1 # break if we are in collision if self.checkInCollision(nextRaycast): if self.verbose: print "Had a collision, terminating simulation" break if self.counter >= simulationCutoff: break # fill in the last state by hand self.stateOverTime[self.counter, :] = currentCarState self.raycastData[self.counter, :] = currentRaycast # return the total reward avgRewardNoCollisionPenalty = avgReward - reward avgReward = avgReward * 1.0 / max(1, self.counter - startIdx) avgRewardNoCollisionPenalty = avgRewardNoCollisionPenalty * 1.0 / max( 1, self.counter - startIdx) # this extra multiplication is so that it is in the same "units" as avgReward runData['discountedReward'] = discountedReward * (1 - self.Sarsa.gamma) runData['avgReward'] = avgReward runData['avgRewardNoCollisionPenalty'] = avgRewardNoCollisionPenalty # this just makes sure we don't get stuck in an infinite loop. if startIdx == self.counter: self.counter += 1 return runData def setNumpyRandomSeed(self, seed=1): np.random.seed(seed) def runBatchSimulation(self, endTime=None, dt=0.05): # for use in playback self.dt = self.options['dt'] self.Sarsa.setDiscountFactor(dt) self.endTime = self.supervisedTrainingTime + self.learningRandomTime + self.learningEvalTime + self.defaultControllerTime self.t = np.arange(0.0, self.endTime, dt) maxNumTimesteps = np.size(self.t) self.stateOverTime = np.zeros((maxNumTimesteps + 1, 3)) self.raycastData = np.zeros((maxNumTimesteps + 1, self.Sensor.numRays)) self.controlInputData = np.zeros(maxNumTimesteps + 1) self.rewardData = np.zeros(maxNumTimesteps + 1) self.emptyQValue = np.zeros(maxNumTimesteps + 1, dtype='bool') self.numTimesteps = maxNumTimesteps self.controllerTypeOrder = [ 'defaultRandom', 'learnedRandom', 'learned', 'default' ] self.counter = 0 self.simulationData = [] self.initializeStatusBar() self.idxDict = dict() numRunsCounter = 0 # three while loops for different phases of simulation, supervisedTraining, learning, default self.idxDict['defaultRandom'] = self.counter loopStartIdx = self.counter simCutoff = min(loopStartIdx + self.supervisedTrainingTime / dt, self.numTimesteps) while ((self.counter - loopStartIdx < self.supervisedTrainingTime / dt) and self.counter < self.numTimesteps): self.printStatusBar() useQValueController = False startIdx = self.counter runData = self.runSingleSimulation(updateQValues=True, controllerType='defaultRandom', simulationCutoff=simCutoff) runData['startIdx'] = startIdx runData['controllerType'] = "defaultRandom" runData['duration'] = self.counter - runData['startIdx'] runData['endIdx'] = self.counter runData['runNumber'] = numRunsCounter numRunsCounter += 1 self.simulationData.append(runData) self.idxDict['learnedRandom'] = self.counter loopStartIdx = self.counter simCutoff = min(loopStartIdx + self.learningRandomTime / dt, self.numTimesteps) while ((self.counter - loopStartIdx < self.learningRandomTime / dt) and self.counter < self.numTimesteps): self.printStatusBar() startIdx = self.counter runData = self.runSingleSimulation(updateQValues=True, controllerType='learnedRandom', simulationCutoff=simCutoff) runData['startIdx'] = startIdx runData['controllerType'] = "learnedRandom" runData['duration'] = self.counter - runData['startIdx'] runData['endIdx'] = self.counter runData['runNumber'] = numRunsCounter numRunsCounter += 1 self.simulationData.append(runData) self.idxDict['learned'] = self.counter loopStartIdx = self.counter simCutoff = min(loopStartIdx + self.learningEvalTime / dt, self.numTimesteps) while ((self.counter - loopStartIdx < self.learningEvalTime / dt) and self.counter < self.numTimesteps): self.printStatusBar() startIdx = self.counter runData = self.runSingleSimulation(updateQValues=False, controllerType='learned', simulationCutoff=simCutoff) runData['startIdx'] = startIdx runData['controllerType'] = "learned" runData['duration'] = self.counter - runData['startIdx'] runData['endIdx'] = self.counter runData['runNumber'] = numRunsCounter numRunsCounter += 1 self.simulationData.append(runData) self.idxDict['default'] = self.counter loopStartIdx = self.counter simCutoff = min(loopStartIdx + self.defaultControllerTime / dt, self.numTimesteps) while ((self.counter - loopStartIdx < self.defaultControllerTime / dt) and self.counter < self.numTimesteps - 1): self.printStatusBar() startIdx = self.counter runData = self.runSingleSimulation(updateQValues=False, controllerType='default', simulationCutoff=simCutoff) runData['startIdx'] = startIdx runData['controllerType'] = "default" runData['duration'] = self.counter - runData['startIdx'] runData['endIdx'] = self.counter runData['runNumber'] = numRunsCounter numRunsCounter += 1 self.simulationData.append(runData) # BOOKKEEPING # truncate stateOverTime, raycastData, controlInputs to be the correct size self.numTimesteps = self.counter + 1 self.stateOverTime = self.stateOverTime[0:self.counter + 1, :] self.raycastData = self.raycastData[0:self.counter + 1, :] self.controlInputData = self.controlInputData[0:self.counter + 1] self.rewardData = self.rewardData[0:self.counter + 1] self.endTime = 1.0 * self.counter / self.numTimesteps * self.endTime def initializeStatusBar(self): self.numTicks = 10 self.nextTickComplete = 1.0 / float(self.numTicks) self.nextTickIdx = 1 print "Simulation percentage complete: (", self.numTicks, " # is complete)" def printStatusBar(self): fractionDone = float(self.counter) / float(self.numTimesteps) if fractionDone > self.nextTickComplete: self.nextTickIdx += 1 self.nextTickComplete += 1.0 / self.numTicks timeSoFar = time.time() - self.startSimTime estimatedTimeLeft_sec = (1 - fractionDone) * timeSoFar / fractionDone estimatedTimeLeft_minutes = estimatedTimeLeft_sec / 60.0 print "#" * self.nextTickIdx, "-" * ( self.numTicks - self.nextTickIdx ), "estimated", estimatedTimeLeft_minutes, "minutes left" def setCollisionFreeInitialState(self): tol = 5 while True: x = np.random.uniform(self.world.Xmin + tol, self.world.Xmax - tol, 1)[0] y = np.random.uniform(self.world.Ymin + tol, self.world.Ymax - tol, 1)[0] theta = np.random.uniform(0, 2 * np.pi, 1)[0] self.Car.setCarState(x, y, theta) self.setRobotFrameState(x, y, theta) if not self.checkInCollision(): break # if self.checkInCollision(): # print "IN COLLISION" # else: # print "COLLISION FREE" return x, y, theta def setupPlayback(self): self.timer = TimerCallback(targetFps=30) self.timer.callback = self.tick playButtonFps = 1.0 / self.dt print "playButtonFPS", playButtonFps self.playTimer = TimerCallback(targetFps=playButtonFps) self.playTimer.callback = self.playTimerCallback self.sliderMovedByPlayTimer = False panel = QtGui.QWidget() l = QtGui.QHBoxLayout(panel) playButton = QtGui.QPushButton('Play/Pause') playButton.connect('clicked()', self.onPlayButton) slider = QtGui.QSlider(QtCore.Qt.Horizontal) slider.connect('valueChanged(int)', self.onSliderChanged) self.sliderMax = self.numTimesteps slider.setMaximum(self.sliderMax) self.slider = slider l.addWidget(playButton) l.addWidget(slider) w = QtGui.QWidget() l = QtGui.QVBoxLayout(w) l.addWidget(self.view) l.addWidget(panel) w.showMaximized() self.frame.connectFrameModified(self.updateDrawIntersection) self.updateDrawIntersection(self.frame) applogic.resetCamera(viewDirection=[0.2, 0, -1]) self.view.showMaximized() self.view.raise_() panel = screengrabberpanel.ScreenGrabberPanel(self.view) panel.widget.show() elapsed = time.time() - self.startSimTime simRate = self.counter / elapsed print "Total run time", elapsed print "Ticks (Hz)", simRate print "Number of steps taken", self.counter self.app.start() def run(self, launchApp=True): self.counter = 1 self.runBatchSimulation() # self.Sarsa.plotWeights() if launchApp: self.setupPlayback() def updateDrawIntersection(self, frame): origin = np.array(frame.transform.GetPosition()) #print "origin is now at", origin d = DebugData() sliderIdx = self.slider.value controllerType = self.getControllerTypeFromCounter(sliderIdx) colorMaxRange = self.colorMap[controllerType] # if the QValue was empty then color it green if self.emptyQValue[sliderIdx]: colorMaxRange = [1, 1, 0] # this is yellow for i in xrange(self.Sensor.numRays): ray = self.Sensor.rays[:, i] rayTransformed = np.array(frame.transform.TransformNormal(ray)) #print "rayTransformed is", rayTransformed intersection = self.Sensor.raycast( self.locator, origin, origin + rayTransformed * self.Sensor.rayLength) if intersection is not None: d.addLine(origin, intersection, color=[1, 0, 0]) else: d.addLine(origin, origin + rayTransformed * self.Sensor.rayLength, color=colorMaxRange) vis.updatePolyData(d.getPolyData(), 'rays', colorByName='RGB255') #camera = self.view.camera() #camera.SetFocalPoint(frame.transform.GetPosition()) #camera.SetPosition(frame.transform.TransformPoint((-30,0,10))) def getControllerTypeFromCounter(self, counter): name = self.controllerTypeOrder[0] for controllerType in self.controllerTypeOrder[1:]: if counter >= self.idxDict[controllerType]: name = controllerType return name def setRobotFrameState(self, x, y, theta): t = vtk.vtkTransform() t.Translate(x, y, 0.0) t.RotateZ(np.degrees(theta)) self.robot.getChildFrame().copyFrame(t) # returns true if we are in collision def checkInCollision(self, raycastDistance=None): if raycastDistance is None: self.setRobotFrameState(self.Car.state[0], self.Car.state[1], self.Car.state[2]) raycastDistance = self.Sensor.raycastAll(self.frame) if np.min(raycastDistance) < self.collisionThreshold: return True else: return False def tick(self): #print timer.elapsed #simulate(t.elapsed) x = np.sin(time.time()) y = np.cos(time.time()) self.setRobotFrameState(x, y, 0.0) if (time.time() - self.playTime) > self.endTime: self.playTimer.stop() def tick2(self): newtime = time.time() - self.playTime print time.time() - self.playTime x = np.sin(newtime) y = np.cos(newtime) self.setRobotFrameState(x, y, 0.0) # just increment the slider, stop the timer if we get to the end def playTimerCallback(self): self.sliderMovedByPlayTimer = True currentIdx = self.slider.value nextIdx = currentIdx + 1 self.slider.setSliderPosition(nextIdx) if currentIdx >= self.sliderMax: print "reached end of tape, stopping playTime" self.playTimer.stop() def onSliderChanged(self, value): if not self.sliderMovedByPlayTimer: self.playTimer.stop() numSteps = len(self.stateOverTime) idx = int(np.floor(numSteps * (1.0 * value / self.sliderMax))) idx = min(idx, numSteps - 1) x, y, theta = self.stateOverTime[idx] self.setRobotFrameState(x, y, theta) self.sliderMovedByPlayTimer = False def onPlayButton(self): if self.playTimer.isActive(): self.onPauseButton() return print 'play' self.playTimer.start() self.playTime = time.time() def onPauseButton(self): print 'pause' self.playTimer.stop() def computeRunStatistics(self): numRuns = len(self.simulationData) runStart = np.zeros(numRuns) runDuration = np.zeros(numRuns) grid = np.arange(1, numRuns + 1) discountedReward = np.zeros(numRuns) avgReward = np.zeros(numRuns) avgRewardNoCollisionPenalty = np.zeros(numRuns) idxMap = dict() for controllerType, color in self.colorMap.iteritems(): idxMap[controllerType] = np.zeros(numRuns, dtype=bool) for idx, val in enumerate(self.simulationData): runStart[idx] = val['startIdx'] runDuration[idx] = val['duration'] discountedReward[idx] = val['discountedReward'] avgReward[idx] = val['avgReward'] avgRewardNoCollisionPenalty[idx] = val[ 'avgRewardNoCollisionPenalty'] controllerType = val['controllerType'] idxMap[controllerType][idx] = True def plotRunData(self, controllerTypeToPlot=None, showPlot=True, onlyLearned=False): if controllerTypeToPlot == None: controllerTypeToPlot = self.colorMap.keys() if onlyLearned: controllerTypeToPlot = ['learnedRandom', 'learned'] numRuns = len(self.simulationData) runStart = np.zeros(numRuns) runDuration = np.zeros(numRuns) grid = np.arange(1, numRuns + 1) discountedReward = np.zeros(numRuns) avgReward = np.zeros(numRuns) avgRewardNoCollisionPenalty = np.zeros(numRuns) idxMap = dict() for controllerType, color in self.colorMap.iteritems(): idxMap[controllerType] = np.zeros(numRuns, dtype=bool) for idx, val in enumerate(self.simulationData): runStart[idx] = val['startIdx'] runDuration[idx] = val['duration'] discountedReward[idx] = val['discountedReward'] avgReward[idx] = val['avgReward'] avgRewardNoCollisionPenalty[idx] = val[ 'avgRewardNoCollisionPenalty'] controllerType = val['controllerType'] idxMap[controllerType][idx] = True # usedQValueController[idx] = (val['controllerType'] == "QValue") # usedDefaultController[idx] = (val['controllerType'] == "default") # usedDefaultRandomController[idx] = (val['controllerType'] == "defaultRandom") # usedQValueRandomController[idx] = (val['controllerType'] == "QValueRandom") self.runStatistics = dict() dataMap = { 'duration': runDuration, 'discountedReward': discountedReward, 'avgReward': avgReward, 'avgRewardNoCollisionPenalty': avgRewardNoCollisionPenalty } def computeRunStatistics(dataMap): for controllerType, idx in idxMap.iteritems(): d = dict() for dataName, dataSet in dataMap.iteritems(): # average the appropriate values in dataset d[dataName] = np.sum( dataSet[idx]) / (1.0 * np.size(dataSet[idx])) self.runStatistics[controllerType] = d computeRunStatistics(dataMap) if not showPlot: return plt.figure() # # idxDefaultRandom = np.where(usedDefaultRandomController==True)[0] # idxQValueController = np.where(usedQValueController==True)[0] # idxQValueControllerRandom = np.where(usedQValueControllerRandom==True)[0] # idxDefault = np.where(usedDefaultController==True)[0] # # plotData = dict() # plotData['defaultRandom'] = {'idx': idxDefaultRandom, 'color': 'b'} # plotData['QValue'] = {'idx': idxQValueController, 'color': 'y'} # plotData['default'] = {'idx': idxDefault, 'color': 'g'} def scatterPlot(dataToPlot): for controllerType in controllerTypeToPlot: idx = idxMap[controllerType] plt.scatter(grid[idx], dataToPlot[idx], color=self.colorMap[controllerType]) def barPlot(dataName): plt.title(dataName) barWidth = 0.5 barCounter = 0 index = np.arange(len(controllerTypeToPlot)) for controllerType in controllerTypeToPlot: val = self.runStatistics[controllerType] plt.bar(barCounter, val[dataName], barWidth, color=self.colorMap[controllerType], label=controllerType) barCounter += 1 plt.xticks(index + barWidth / 2.0, controllerTypeToPlot) plt.subplot(4, 1, 1) plt.title('run duration') scatterPlot(runDuration) # for controllerType, idx in idxMap.iteritems(): # plt.scatter(grid[idx], runDuration[idx], color=self.colorMap[controllerType]) # plt.scatter(runStart[idxDefaultRandom], runDuration[idxDefaultRandom], color='b') # plt.scatter(runStart[idxQValueController], runDuration[idxQValueController], color='y') # plt.scatter(runStart[idxDefault], runDuration[idxDefault], color='g') plt.xlabel('run #') plt.ylabel('episode duration') plt.subplot(2, 1, 2) plt.title('discounted reward') scatterPlot(discountedReward) # for key, val in plotData.iteritems(): # plt.scatter(grid[idx], discountedReward[idx], color=self.colorMap[controllerType]) # plt.subplot(3,1,3) # plt.title("average reward") # scatterPlot(avgReward) # for key, val in plotData.iteritems(): # plt.scatter(grid[val['idx']],avgReward[val['idx']], color=val['color']) # plt.subplot(4,1,4) # plt.title("average reward no collision penalty") # scatterPlot(avgRewardNoCollisionPenalty) # # for key, val in plotData.iteritems(): # # plt.scatter(grid[val['idx']],avgRewardNoCollisionPenalty[val['idx']], color=val['color']) ## plot summary statistics plt.figure() plt.subplot(2, 1, 1) barPlot("duration") plt.subplot(2, 1, 2) barPlot("discountedReward") # plt.subplot(3,1,3) # barPlot("avgReward") # # plt.subplot(4,1,4) # barPlot("avgRewardNoCollisionPenalty") plt.show() def plotMultipleRunData(self, simList, toPlot=['duration', 'discountedReward'], controllerType='learned'): plt.figure() numPlots = len(toPlot) grid = np.arange(len(simList)) def plot(fieldToPlot, plotNum): plt.subplot(numPlots, 1, plotNum) plt.title(fieldToPlot) val = 0 * grid barWidth = 0.5 barCounter = 0 for idx, sim in enumerate(simList): value = sim.runStatistics[controllerType][fieldToPlot] plt.bar(idx, value, barWidth) counter = 1 for fieldToPlot in toPlot: plot(fieldToPlot, counter) counter += 1 plt.show() def saveToFile(self, filename): # should also save the run data if it is available, i.e. stateOverTime, rewardOverTime filename = 'data/' + filename + ".out" my_shelf = shelve.open(filename, 'n') my_shelf['options'] = self.options if self.options['SARSA']['type'] == "discrete": my_shelf['SARSA_QValues'] = self.Sarsa.QValues my_shelf['simulationData'] = self.simulationData my_shelf['stateOverTime'] = self.stateOverTime my_shelf['raycastData'] = self.raycastData my_shelf['controlInputData'] = self.controlInputData my_shelf['emptyQValue'] = self.emptyQValue my_shelf['numTimesteps'] = self.numTimesteps my_shelf['idxDict'] = self.idxDict my_shelf['counter'] = self.counter my_shelf.close() @staticmethod def loadFromFile(filename): filename = 'data/' + filename + ".out" sim = Simulator(autoInitialize=False, verbose=False) my_shelf = shelve.open(filename) sim.options = my_shelf['options'] sim.initialize() if sim.options['SARSA']['type'] == "discrete": sim.Sarsa.QValues = np.array(my_shelf['SARSA_QValues']) sim.simulationData = my_shelf['simulationData'] # sim.runStatistics = my_shelf['runStatistics'] sim.stateOverTime = np.array(my_shelf['stateOverTime']) sim.raycastData = np.array(my_shelf['raycastData']) sim.controlInputData = np.array(my_shelf['controlInputData']) sim.emptyQValue = np.array(my_shelf['emptyQValue']) sim.numTimesteps = my_shelf['numTimesteps'] sim.idxDict = my_shelf['idxDict'] sim.counter = my_shelf['counter'] my_shelf.close() return sim
from ddapp.consoleapp import ConsoleApp from ddapp.debugVis import DebugData import ddapp.visualization as vis # initialize application components app = ConsoleApp() view = app.createView() view.showMaximized() # create a sphere primitive d = DebugData() d.addSphere(center=(0,0,0), radius=0.5) # show the sphere in the visualization window sphere = vis.showPolyData(d.getPolyData(), 'sphere') sphere.setProperty('Color', [0,1,0]) # start the application app.start()
position, quat = transformUtils.poseFromTransform(pelvisToWorld) msg = lcmbot.pose_t() msg.utime = robotStateJointController.lastRobotStateMessage.utime msg.pos = [0.0, 0.0, 0.0] msg.orientation = quat.tolist() lcmUtils.publish(channel, msg) def enable(self): self.capture() self.timer.start() def disable(self): self.timer.stop() self.clear() #--------------------------------------- app = ConsoleApp() app.setupGlobals(globals()) app.showPythonConsole() view = app.createView() view.show() robotsystem.create(view, globals()) estimator = FootLockEstimator() app.start()
class AtlasCommandPanel(object): def __init__(self): self.app = ConsoleApp() self.view = self.app.createView() self.robotSystem = robotsystem.create(self.view) jointGroups = getJointGroups() self.jointTeleopPanel = JointTeleopPanel(self.robotSystem, jointGroups) self.jointCommandPanel = JointCommandPanel(self.robotSystem) self.jointCommandPanel.ui.speedSpinBox.setEnabled(False) self.jointCommandPanel.ui.mirrorArmsCheck.setChecked( self.jointTeleopPanel.mirrorArms) self.jointCommandPanel.ui.mirrorLegsCheck.setChecked( self.jointTeleopPanel.mirrorLegs) self.jointCommandPanel.ui.resetButton.connect( 'clicked()', self.resetJointTeleopSliders) self.jointCommandPanel.ui.mirrorArmsCheck.connect( 'clicked()', self.mirrorJointsChanged) self.jointCommandPanel.ui.mirrorLegsCheck.connect( 'clicked()', self.mirrorJointsChanged) self.widget = QtGui.QWidget() gl = QtGui.QGridLayout(self.widget) gl.addWidget(self.app.showObjectModel(), 0, 0, 4, 1) # row, col, rowspan, colspan gl.addWidget(self.view, 0, 1, 1, 1) gl.addWidget(self.jointCommandPanel.widget, 1, 1, 1, 1) gl.addWidget(self.jointTeleopPanel.widget, 0, 2, -1, 1) gl.setRowStretch(0, 1) gl.setColumnStretch(1, 1) #self.sub = lcmUtils.addSubscriber('COMMITTED_ROBOT_PLAN', lcmdrc.robot_plan_t, self.onRobotPlan) lcmUtils.addSubscriber('STEERING_COMMAND_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal) lcmUtils.addSubscriber('THROTTLE_COMMAND_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal) def onSingleJointPositionGoal(self, msg): jointPositionGoal = msg.joint_position jointName = msg.joint_name allowedJointNames = ['l_leg_aky', 'l_arm_lwy'] if not (jointName in allowedJointNames): print 'Position goals are not allowed for this joint' print 'ignoring this position goal' print 'use the sliders instead' return if (jointName == 'l_arm_lwy') and ( not self.jointCommandPanel.steeringControlEnabled): print 'Steering control not enabled' print 'ignoring steering command' return if (jointName == 'l_leg_aky') and ( not self.jointCommandPanel.throttleControlEnabled): print 'Throttle control not enabled' print 'ignoring throttle command' return jointIdx = self.jointTeleopPanel.toJointIndex(joint_name) self.jointTeleopPanel.endPose[jointIdx] = jointPositionGoal self.jointTeleopPanel.updateSliders() self.jointTeleopPanel.sliderChanged(jointName) def onRobotPlan(self, msg): playback = planplayback.PlanPlayback() playback.interpolationMethod = 'pchip' poseTimes, poses = playback.getPlanPoses(msg) f = playback.getPoseInterpolator(poseTimes, poses) jointController = self.robotSystem.teleopJointController timer = simpletimer.SimpleTimer() def setPose(pose): jointController.setPose('plan_playback', pose) self.jointTeleopPanel.endPose = pose self.jointTeleopPanel.updateSliders() commandStream.setGoalPose(pose) def updateAnimation(): tNow = timer.elapsed() if tNow > poseTimes[-1]: pose = poses[-1] setPose(pose) return False pose = f(tNow) setPose(pose) self.animationTimer = TimerCallback() self.animationTimer.targetFps = 60 self.animationTimer.callback = updateAnimation self.animationTimer.start() def mirrorJointsChanged(self): self.jointTeleopPanel.mirrorLegs = self.jointCommandPanel.ui.mirrorLegsCheck.checked self.jointTeleopPanel.mirrorArms = self.jointCommandPanel.ui.mirrorArmsCheck.checked def resetJointTeleopSliders(self): self.jointTeleopPanel.resetPoseToRobotState()
class Simulator(object): def __init__(self, percentObsDensity=20, endTime=40, nonRandomWorld=False, circleRadius=0.7, worldScale=1.0, autoInitialize=True, verbose=True): self.verbose = verbose self.startSimTime = time.time() self.collisionThreshold = 1.3 self.randomSeed = 5 self.Sensor_rayLength = 8 self.percentObsDensity = percentObsDensity self.defaultControllerTime = 1000 self.nonRandomWorld = nonRandomWorld self.circleRadius = circleRadius self.worldScale = worldScale # create the visualizer object self.app = ConsoleApp() self.view = self.app.createView(useGrid=False) self.initializeOptions() self.initializeColorMap() if autoInitialize: self.initialize() def initializeOptions(self): self.options = dict() self.options['World'] = dict() self.options['World']['obstaclesInnerFraction'] = 0.85 self.options['World']['randomSeed'] = 40 self.options['World']['percentObsDensity'] = 7.5 self.options['World']['nonRandomWorld'] = True self.options['World']['circleRadius'] = 1.0 self.options['World']['scale'] = 1.0 self.options['Sensor'] = dict() self.options['Sensor']['rayLength'] = 10 self.options['Sensor']['numRays'] = 20 self.options['Quad'] = dict() self.options['Quad']['velocity'] = 18 self.options['dt'] = 0.05 self.options['runTime'] = dict() self.options['runTime']['defaultControllerTime'] = 10 def setDefaultOptions(self): defaultOptions = dict() defaultOptions['World'] = dict() defaultOptions['World']['obstaclesInnerFraction'] = 0.85 defaultOptions['World']['randomSeed'] = 40 defaultOptions['World']['percentObsDensity'] = 7.5 defaultOptions['World']['nonRandomWorld'] = True defaultOptions['World']['circleRadius'] = 1.75 defaultOptions['World']['scale'] = 1.0 defaultOptions['Sensor'] = dict() defaultOptions['Sensor']['rayLength'] = 10 defaultOptions['Sensor']['numRays'] = 20 defaultOptions['Quad'] = dict() defaultOptions['Quad']['velocity'] = 18 defaultOptions['dt'] = 0.05 defaultOptions['runTime'] = dict() defaultOptions['runTime']['defaultControllerTime'] = 10 for k in defaultOptions: self.options.setdefault(k, defaultOptions[k]) for k in defaultOptions: if not isinstance(defaultOptions[k], dict): continue for j in defaultOptions[k]: self.options[k].setdefault(j, defaultOptions[k][j]) def initializeColorMap(self): self.colorMap = dict() self.colorMap['default'] = [0, 1, 0] def initialize(self): self.dt = self.options['dt'] self.controllerTypeOrder = ['default'] self.setDefaultOptions() self.Sensor = SensorObj(rayLength=self.options['Sensor']['rayLength'], numRays=self.options['Sensor']['numRays']) self.Controller = ControllerObj(self.Sensor) self.Quad = QuadPlant(controller=self.Controller, velocity=self.options['Quad']['velocity']) # create the things needed for simulation om.removeFromObjectModel(om.findObjectByName('world')) self.world = World.buildWarehouseWorld( percentObsDensity=self.options['World']['percentObsDensity'], circleRadius=self.options['World']['circleRadius'], nonRandom=self.options['World']['nonRandomWorld'], scale=self.options['World']['scale'], randomSeed=self.options['World']['randomSeed'], obstaclesInnerFraction=self.options['World'] ['obstaclesInnerFraction']) om.removeFromObjectModel(om.findObjectByName('robot')) self.robot, self.frame = World.buildRobot() self.locator = World.buildCellLocator(self.world.visObj.polyData) self.Sensor.setLocator(self.locator) self.frame = self.robot.getChildFrame() self.frame.setProperty('Scale', 3) self.frame.setProperty('Edit', True) self.frame.widget.HandleRotationEnabledOff() rep = self.frame.widget.GetRepresentation() rep.SetTranslateAxisEnabled(2, False) rep.SetRotateAxisEnabled(0, False) rep.SetRotateAxisEnabled(1, False) self.defaultControllerTime = self.options['runTime'][ 'defaultControllerTime'] self.Quad.setFrame(self.frame) print "Finished initialization" def runSingleSimulation(self, controllerType='default', simulationCutoff=None): self.setCollisionFreeInitialState() currentQuadState = np.copy(self.Quad.state) nextQuadState = np.copy(self.Quad.state) self.setRobotFrameState(currentQuadState[0], currentQuadState[1], currentQuadState[2]) currentRaycast = self.Sensor.raycastAll(self.frame) nextRaycast = np.zeros(self.Sensor.numRays) # record the reward data runData = dict() startIdx = self.counter while (self.counter < self.numTimesteps - 1): idx = self.counter currentTime = self.t[idx] self.stateOverTime[idx, :] = currentQuadState x = self.stateOverTime[idx, 0] y = self.stateOverTime[idx, 1] theta = self.stateOverTime[idx, 2] self.setRobotFrameState(x, y, theta) # self.setRobotState(currentQuadState[0], currentQuadState[1], currentQuadState[2]) currentRaycast = self.Sensor.raycastAll(self.frame) self.raycastData[idx, :] = currentRaycast S_current = (currentQuadState, currentRaycast) if controllerType not in self.colorMap.keys(): print raise ValueError("controller of type " + controllerType + " not supported") if controllerType in ["default", "defaultRandom"]: controlInput, controlInputIdx = self.Controller.computeControlInput( currentQuadState, currentTime, self.frame, raycastDistance=currentRaycast, randomize=False) self.controlInputData[idx] = controlInput nextQuadState = self.Quad.simulateOneStep( controlInput=controlInput, dt=self.dt) # want to compute nextRaycast so we can do the SARSA algorithm x = nextQuadState[0] y = nextQuadState[1] theta = nextQuadState[2] self.setRobotFrameState(x, y, theta) nextRaycast = self.Sensor.raycastAll(self.frame) # Compute the next control input S_next = (nextQuadState, nextRaycast) if controllerType in ["default", "defaultRandom"]: nextControlInput, nextControlInputIdx = self.Controller.computeControlInput( nextQuadState, currentTime, self.frame, raycastDistance=nextRaycast, randomize=False) #bookkeeping currentQuadState = nextQuadState currentRaycast = nextRaycast self.counter += 1 # break if we are in collision if self.checkInCollision(nextRaycast): if self.verbose: print "Had a collision, terminating simulation" break if self.counter >= simulationCutoff: break # fill in the last state by hand self.stateOverTime[self.counter, :] = currentQuadState self.raycastData[self.counter, :] = currentRaycast # this just makes sure we don't get stuck in an infinite loop. if startIdx == self.counter: self.counter += 1 return runData def setNumpyRandomSeed(self, seed=1): np.random.seed(seed) def runBatchSimulation(self, endTime=None, dt=0.05): # for use in playback self.dt = self.options['dt'] self.endTime = self.defaultControllerTime # used to be the sum of the other times as well self.t = np.arange(0.0, self.endTime, dt) maxNumTimesteps = np.size(self.t) self.stateOverTime = np.zeros((maxNumTimesteps + 1, 3)) self.raycastData = np.zeros((maxNumTimesteps + 1, self.Sensor.numRays)) self.controlInputData = np.zeros(maxNumTimesteps + 1) self.numTimesteps = maxNumTimesteps self.controllerTypeOrder = ['default'] self.counter = 0 self.simulationData = [] self.initializeStatusBar() self.idxDict = dict() numRunsCounter = 0 self.idxDict['default'] = self.counter loopStartIdx = self.counter simCutoff = min(loopStartIdx + self.defaultControllerTime / dt, self.numTimesteps) while ((self.counter - loopStartIdx < self.defaultControllerTime / dt) and self.counter < self.numTimesteps - 1): self.printStatusBar() startIdx = self.counter runData = self.runSingleSimulation(controllerType='default', simulationCutoff=simCutoff) runData['startIdx'] = startIdx runData['controllerType'] = "default" runData['duration'] = self.counter - runData['startIdx'] runData['endIdx'] = self.counter runData['runNumber'] = numRunsCounter numRunsCounter += 1 self.simulationData.append(runData) # BOOKKEEPING # truncate stateOverTime, raycastData, controlInputs to be the correct size self.numTimesteps = self.counter + 1 self.stateOverTime = self.stateOverTime[0:self.counter + 1, :] self.raycastData = self.raycastData[0:self.counter + 1, :] self.controlInputData = self.controlInputData[0:self.counter + 1] self.endTime = 1.0 * self.counter / self.numTimesteps * self.endTime def initializeStatusBar(self): self.numTicks = 10 self.nextTickComplete = 1.0 / float(self.numTicks) self.nextTickIdx = 1 print "Simulation percentage complete: (", self.numTicks, " # is complete)" def printStatusBar(self): fractionDone = float(self.counter) / float(self.numTimesteps) if fractionDone > self.nextTickComplete: self.nextTickIdx += 1 self.nextTickComplete += 1.0 / self.numTicks timeSoFar = time.time() - self.startSimTime estimatedTimeLeft_sec = (1 - fractionDone) * timeSoFar / fractionDone estimatedTimeLeft_minutes = estimatedTimeLeft_sec / 60.0 print "#" * self.nextTickIdx, "-" * ( self.numTicks - self.nextTickIdx ), "estimated", estimatedTimeLeft_minutes, "minutes left" def setCollisionFreeInitialState(self): tol = 5 while True: x = 0.0 y = -5.0 theta = 0 #+ np.random.uniform(0,2*np.pi,1)[0] * 0.01 self.Quad.setQuadState(x, y, theta) self.setRobotFrameState(x, y, theta) print "In loop" if not self.checkInCollision(): break return x, y, theta def setRandomCollisionFreeInitialState(self): tol = 5 while True: x = np.random.uniform(self.world.Xmin + tol, self.world.Xmax - tol, 1)[0] y = np.random.uniform(self.world.Ymin + tol, self.world.Ymax - tol, 1)[0] theta = np.random.uniform(0, 2 * np.pi, 1)[0] self.Quad.setQuadState(x, y, theta) self.setRobotFrameState(x, y, theta) if not self.checkInCollision(): break return x, y, theta def setupPlayback(self): self.timer = TimerCallback(targetFps=30) self.timer.callback = self.tick playButtonFps = 1.0 / self.dt print "playButtonFPS", playButtonFps self.playTimer = TimerCallback(targetFps=playButtonFps) self.playTimer.callback = self.playTimerCallback self.sliderMovedByPlayTimer = False panel = QtGui.QWidget() l = QtGui.QHBoxLayout(panel) playButton = QtGui.QPushButton('Play/Pause') playButton.connect('clicked()', self.onPlayButton) slider = QtGui.QSlider(QtCore.Qt.Horizontal) slider.connect('valueChanged(int)', self.onSliderChanged) self.sliderMax = self.numTimesteps slider.setMaximum(self.sliderMax) self.slider = slider l.addWidget(playButton) l.addWidget(slider) w = QtGui.QWidget() l = QtGui.QVBoxLayout(w) l.addWidget(self.view) l.addWidget(panel) w.showMaximized() self.frame.connectFrameModified(self.updateDrawIntersection) self.updateDrawIntersection(self.frame) applogic.resetCamera(viewDirection=[0.2, 0, -1]) self.view.showMaximized() self.view.raise_() panel = screengrabberpanel.ScreenGrabberPanel(self.view) panel.widget.show() elapsed = time.time() - self.startSimTime simRate = self.counter / elapsed print "Total run time", elapsed print "Ticks (Hz)", simRate print "Number of steps taken", self.counter self.app.start() def run(self, launchApp=True): self.counter = 1 self.runBatchSimulation() # self.Sarsa.plotWeights() if launchApp: self.setupPlayback() def updateDrawIntersection(self, frame): origin = np.array(frame.transform.GetPosition()) #print "origin is now at", origin d = DebugData() sliderIdx = self.slider.value controllerType = self.getControllerTypeFromCounter(sliderIdx) colorMaxRange = self.colorMap[controllerType] for j in xrange(self.Sensor.numLayers): for i in xrange(self.Sensor.numRays): ray = self.Sensor.rays[:, i, j] rayTransformed = np.array(frame.transform.TransformNormal(ray)) #print "rayTransformed is", rayTransformed intersection = self.Sensor.raycast( self.locator, origin, origin + rayTransformed * self.Sensor.rayLength) if intersection is not None: d.addLine(origin, intersection, color=[1, 0, 0]) else: d.addLine(origin, origin + rayTransformed * self.Sensor.rayLength, color=colorMaxRange) vis.updatePolyData(d.getPolyData(), 'rays', colorByName='RGB255') #camera = self.view.camera() #camera.SetFocalPoint(frame.transform.GetPosition()) #camera.SetPosition(frame.transform.TransformPoint((-30,0,10))) def getControllerTypeFromCounter(self, counter): name = self.controllerTypeOrder[0] for controllerType in self.controllerTypeOrder[1:]: if counter >= self.idxDict[controllerType]: name = controllerType return name def setRobotFrameState(self, x, y, theta): t = vtk.vtkTransform() t.Translate(x, y, 0.0) t.RotateZ(np.degrees(theta)) self.robot.getChildFrame().copyFrame(t) # returns true if we are in collision def checkInCollision(self, raycastDistance=None): if raycastDistance is None: self.setRobotFrameState(self.Quad.state[0], self.Quad.state[1], self.Quad.state[2]) raycastDistance = self.Sensor.raycastAll(self.frame) if np.min(raycastDistance) < self.collisionThreshold: return True else: return False def tick(self): #print timer.elapsed #simulate(t.elapsed) x = np.sin(time.time()) y = np.cos(time.time()) self.setRobotFrameState(x, y, 0.0) if (time.time() - self.playTime) > self.endTime: self.playTimer.stop() def tick2(self): newtime = time.time() - self.playTime print time.time() - self.playTime x = np.sin(newtime) y = np.cos(newtime) self.setRobotFrameState(x, y, 0.0) # just increment the slider, stop the timer if we get to the end def playTimerCallback(self): self.sliderMovedByPlayTimer = True currentIdx = self.slider.value nextIdx = currentIdx + 1 self.slider.setSliderPosition(nextIdx) if currentIdx >= self.sliderMax: print "reached end of tape, stopping playTime" self.playTimer.stop() def onSliderChanged(self, value): if not self.sliderMovedByPlayTimer: self.playTimer.stop() numSteps = len(self.stateOverTime) idx = int(np.floor(numSteps * (1.0 * value / self.sliderMax))) idx = min(idx, numSteps - 1) x, y, theta = self.stateOverTime[idx] self.setRobotFrameState(x, y, theta) self.sliderMovedByPlayTimer = False def onPlayButton(self): if self.playTimer.isActive(): self.onPauseButton() return print 'play' self.playTimer.start() self.playTime = time.time() def onPauseButton(self): print 'pause' self.playTimer.stop() def saveToFile(self, filename): # should also save the run data if it is available, i.e. stateOverTime, rewardOverTime filename = 'data/' + filename + ".out" my_shelf = shelve.open(filename, 'n') my_shelf['options'] = self.options my_shelf['simulationData'] = self.simulationData my_shelf['stateOverTime'] = self.stateOverTime my_shelf['raycastData'] = self.raycastData my_shelf['controlInputData'] = self.controlInputData my_shelf['numTimesteps'] = self.numTimesteps my_shelf['idxDict'] = self.idxDict my_shelf['counter'] = self.counter my_shelf.close() @staticmethod def loadFromFile(filename): filename = 'data/' + filename + ".out" sim = Simulator(autoInitialize=False, verbose=False) my_shelf = shelve.open(filename) sim.options = my_shelf['options'] sim.initialize() sim.simulationData = my_shelf['simulationData'] sim.stateOverTime = np.array(my_shelf['stateOverTime']) sim.raycastData = np.array(my_shelf['raycastData']) sim.controlInputData = np.array(my_shelf['controlInputData']) sim.numTimesteps = my_shelf['numTimesteps'] sim.idxDict = my_shelf['idxDict'] sim.counter = my_shelf['counter'] my_shelf.close() return sim
class SimpleSimulator(object): def __init__(self): self.setDefaultOptions() self.initialize() def setDefaultOptions(self): defaultOptions = dict() defaultOptions['Sensor'] = dict() defaultOptions['Sensor']['rayLength'] = 20 defaultOptions['Sensor']['numRays'] = 100 defaultOptions['Sensor']['FOV'] = 270 defaultOptions['Sim'] = dict() defaultOptions['Sim']['dt'] = 0.05 defaultOptions['Sim']['usePursuitController'] = True defaultOptions['featureDetector'] = {} defaultOptions['featureDetector']['detectCorners'] = True self.options = defaultOptions self.app = ConsoleApp() self.view = self.app.createView(useGrid=False) def initialize(self): self.car = DubinsCar() self.sensor = SensorObj(rayLength=self.options['Sensor']['rayLength'], numRays=self.options['Sensor']['numRays'], FOV=self.options['Sensor']['FOV']) self.controller = DubinsPIDController(self.sensor, self.car) self.world = World.buildDonutWorld() self.locator = World.buildCellLocator(self.world.visObj.polyData) self.sensor.setLocator(self.locator) self.robot, self.carFrame = World.buildRobot() self.car.setFrame(self.carFrame) self.locator = World.buildCellLocator(self.world.visObj.polyData) self.wallDetector = WallDetector(self.sensor) self.planner = SimplePlanner(self.sensor) self.pursuitController = PurePursuitController(self.car, self.sensor) self.featureDetector = FeatureDetector(self.sensor) def updateDrawIntersection(self, frame): origin = np.array(frame.transform.GetPosition()) #print "origin is now at", origin d = DebugData() colorMaxRange = [0,1,0] for i in xrange(self.sensor.numRays): ray = self.sensor.rays[:,i] rayTransformed = np.array(frame.transform.TransformNormal(ray)) #print "rayTransformed is", rayTransformed intersection = self.sensor.raycast(self.locator, origin, origin + rayTransformed*self.sensor.rayLength) if intersection is not None: d.addLine(origin, intersection, color=[1,0,0]) else: d.addLine(origin, origin+rayTransformed*self.sensor.rayLength, color=colorMaxRange) vis.updatePolyData(d.getPolyData(), 'rays', colorByName='RGB255') def playTimerCallback(self): self.simulateOneStep(self.options['Sim']['dt']) def simulateOneStep(self, dt): verbose = True raycastData = self.sensor.raycastAllFromCurrentFrameLocation() if self.options['Sim']['usePursuitController']: L_fw, theta = self.planner.computePursuitPoint(raycastData, plot=True) carState = self.car.state controlInput = self.pursuitController.computeControlInput(carState, dt, L_fw, theta) if self.options['featureDetector']['detectCorners']: self.featureDetector.detectCorner(raycastData, plot=True, verbose=True) newState = self.car.simulateOneStep(controlInput, dt=dt) self.car.setFrameToState() def onPlayButton(self): if self.playTimer.isActive(): self.playTimer.stop() return self.car.resetStateToFrameLocation() self.playTimer.start() def launchViewer(self): playButtonFps = 1.0/self.options['Sim']['dt'] print "playButtonFPS", playButtonFps self.playTimer = TimerCallback(targetFps=playButtonFps) self.playTimer.callback = self.playTimerCallback panel = QtGui.QWidget() l = QtGui.QHBoxLayout(panel) playButton = QtGui.QPushButton('Play/Pause') playButton.connect('clicked()', self.onPlayButton) l.addWidget(playButton) w = QtGui.QWidget() l = QtGui.QVBoxLayout(w) l.addWidget(self.view) l.addWidget(panel) w.showMaximized() self.carFrame.connectFrameModified(self.updateDrawIntersection) self.updateDrawIntersection(self.carFrame) applogic.resetCamera(viewDirection=[0.2,0,-1]) self.view.showMaximized() self.view.raise_() self.app.start() def testCrossTrackError(self): carState = np.copy(self.car.state) carState[self.car.idx['v']] = 5.0 raycastData = self.sensor.raycastAllFromCurrentFrameLocation() wallsFound = self.wallDetector.findWalls(raycastData, addNoise=False) return self.controller.computeCrossTrackError(carState, wallsFound, verbose=True) def testPursuitController(self): L_fw, theta = self.planner.testFromCurrent() self.car.resetStateToFrameLocation() v_des = 5.0 carState = self.car.state dt = 0.05 u = self.pursuitController.computeControlInput(carState, dt, L_fw, theta, v_des, verbose=True) def testDetectFeature(self): raycastData = self.sensor.raycastAllFromCurrentFrameLocation() self.featureDetector.detectCorner(raycastData, plot=True, verbose=True)
class AtlasCommandPanel(object): def __init__(self): self.app = ConsoleApp() self.view = self.app.createView() self.robotSystem = robotsystem.create(self.view) jointGroups = getJointGroups() self.jointTeleopPanel = JointTeleopPanel(self.robotSystem, jointGroups) self.jointCommandPanel = JointCommandPanel(self.robotSystem) self.jointCommandPanel.ui.speedSpinBox.setEnabled(False) self.jointCommandPanel.ui.mirrorArmsCheck.setChecked(self.jointTeleopPanel.mirrorArms) self.jointCommandPanel.ui.mirrorLegsCheck.setChecked(self.jointTeleopPanel.mirrorLegs) self.jointCommandPanel.ui.resetButton.connect('clicked()', self.resetJointTeleopSliders) self.jointCommandPanel.ui.mirrorArmsCheck.connect('clicked()', self.mirrorJointsChanged) self.jointCommandPanel.ui.mirrorLegsCheck.connect('clicked()', self.mirrorJointsChanged) self.widget = QtGui.QWidget() gl = QtGui.QGridLayout(self.widget) gl.addWidget(self.app.showObjectModel(), 0, 0, 4, 1) # row, col, rowspan, colspan gl.addWidget(self.view, 0, 1, 1, 1) gl.addWidget(self.jointCommandPanel.widget, 1, 1, 1, 1) gl.addWidget(self.jointTeleopPanel.widget, 0, 2, -1, 1) gl.setRowStretch(0,1) gl.setColumnStretch(1,1) #self.sub = lcmUtils.addSubscriber('COMMITTED_ROBOT_PLAN', lcmdrc.robot_plan_t, self.onRobotPlan) lcmUtils.addSubscriber('STEERING_COMMAND_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal) lcmUtils.addSubscriber('THROTTLE_COMMAND_POSITION_GOAL', lcmdrc.joint_position_goal_t, self.onSingleJointPositionGoal) def onSingleJointPositionGoal(self, msg): jointPositionGoal = msg.joint_position jointName = msg.joint_name allowedJointNames = ['l_leg_aky','l_arm_lwy'] if not (jointName in allowedJointNames): print 'Position goals are not allowed for this joint' print 'ignoring this position goal' print 'use the sliders instead' return if (jointName == 'l_arm_lwy') and (not self.jointCommandPanel.steeringControlEnabled): print 'Steering control not enabled' print 'ignoring steering command' return if (jointName == 'l_leg_aky') and (not self.jointCommandPanel.throttleControlEnabled): print 'Throttle control not enabled' print 'ignoring throttle command' return jointIdx = self.jointTeleopPanel.toJointIndex(joint_name) self.jointTeleopPanel.endPose[jointIdx] = jointPositionGoal self.jointTeleopPanel.updateSliders() self.jointTeleopPanel.sliderChanged(jointName) def onRobotPlan(self, msg): playback = planplayback.PlanPlayback() playback.interpolationMethod = 'pchip' poseTimes, poses = playback.getPlanPoses(msg) f = playback.getPoseInterpolator(poseTimes, poses) jointController = self.robotSystem.teleopJointController timer = simpletimer.SimpleTimer() def setPose(pose): jointController.setPose('plan_playback', pose) self.jointTeleopPanel.endPose = pose self.jointTeleopPanel.updateSliders() commandStream.setGoalPose(pose) def updateAnimation(): tNow = timer.elapsed() if tNow > poseTimes[-1]: pose = poses[-1] setPose(pose) return False pose = f(tNow) setPose(pose) self.animationTimer = TimerCallback() self.animationTimer.targetFps = 60 self.animationTimer.callback = updateAnimation self.animationTimer.start() def mirrorJointsChanged(self): self.jointTeleopPanel.mirrorLegs = self.jointCommandPanel.ui.mirrorLegsCheck.checked self.jointTeleopPanel.mirrorArms = self.jointCommandPanel.ui.mirrorArmsCheck.checked def resetJointTeleopSliders(self): self.jointTeleopPanel.resetPoseToRobotState()