def testMaxn(): print '===== test maxn =====' print '\n>>>normal\n' mu = 10 sigma = 3 n = 5 x = [] y = [] for i in range(100000): m = -sys.maxint for j in range(n): r = np.random.normal(mu, sigma) x.append(r) if r > m: m = r y.append(m) ddist0 = DDist.create(x) ddist1 = DDist.create(y) ddist2 = maxn(n, ddist0) print 'base', ddist0.mean, ddist0.std print 'sim', ddist1.mean, ddist1.std print 'ana', ddist2.mean, ddist2.std ddist1.plot('/tmp/test_maxn_normal1.pdf') ddist2.plot('/tmp/test_maxn_normal2.pdf') print '\n>>>pareto\n' a = 1.3 x0 = 0 x = [] y = [] for i in range(100000): m = -sys.maxint for j in range(n): r = np.random.pareto(a) + x0 x.append(r) if r > m: m = r y.append(m) ddist0 = DDist.create(x, tail=('p', 0.1), tnh=25) ddist1 = DDist.create(y, tail=('p', 0.1), tnh=25) #ddist0 = DDist.create(x) #ddist1 = DDist.create(y) ddist2 = maxn(n, ddist0) print 'base', ddist0.mean, ddist0.std, 'length', len(ddist0.pmfy), len( ddist0.tpmfy) print 'sim', ddist1.mean, ddist1.std, 'length', len(ddist1.pmfy), len( ddist1.tpmfy) print 'ana', ddist2.mean, ddist2.std, 'length', len(ddist2.pmfy), len( ddist2.tpmfy) ddist1.plot('/tmp/test_maxn_pareto1.pdf') ddist2.plot('/tmp/test_maxn_pareto2.pdf') print '===== end =====\n'
def testMaxn(): print '===== test maxn =====' print '\n>>>normal\n' mu = 10 sigma = 3 n = 5 x = [] y = [] for i in range(100000): m = -sys.maxint for j in range(n): r = np.random.normal(mu, sigma) x.append(r) if r > m: m = r y.append(m) ddist0 = DDist.create(x) ddist1 = DDist.create(y) ddist2 = maxn(n, ddist0) print 'base', ddist0.mean, ddist0.std print 'sim', ddist1.mean, ddist1.std print 'ana', ddist2.mean, ddist2.std ddist1.plot('/tmp/test_maxn_normal1.pdf') ddist2.plot('/tmp/test_maxn_normal2.pdf') print '\n>>>pareto\n' a = 1.3 x0 = 0 x = [] y = [] for i in range(100000): m = -sys.maxint for j in range(n): r = np.random.pareto(a) + x0 x.append(r) if r > m: m = r y.append(m) ddist0 = DDist.create(x, tail=('p', 0.1), tnh=25) ddist1 = DDist.create(y, tail=('p', 0.1), tnh=25) #ddist0 = DDist.create(x) #ddist1 = DDist.create(y) ddist2 = maxn(n, ddist0) print 'base', ddist0.mean, ddist0.std, 'length', len(ddist0.pmfy), len(ddist0.tpmfy) print 'sim', ddist1.mean, ddist1.std, 'length', len(ddist1.pmfy), len(ddist1.tpmfy) print 'ana', ddist2.mean, ddist2.std, 'length', len(ddist2.pmfy), len(ddist2.tpmfy) ddist1.plot('/tmp/test_maxn_pareto1.pdf') ddist2.plot('/tmp/test_maxn_pareto2.pdf') print '===== end =====\n'
def testCond(): print '===== test cond =====' print '\n>>> normal\n' p = 0.8 mu1 = 10 sigma1 = 3 mu2 = 20 sigma2 = 1 x1 = [] x2 = [] y = [] for i in range(100000): r = np.random.random() if r < p: s = np.random.normal(mu1, sigma1) x1.append(s) y.append(s) else: s = np.random.normal(mu2, sigma2) x2.append(s) y.append(s) ddist0 = DDist.create(x1) ddist1 = DDist.create(x2) ddist2 = DDist.create(y) ddist3 = cond(p, ddist0, ddist1) print 'base1', ddist0.mean, ddist0.std print 'base2', ddist1.mean, ddist1.std print 'sim', ddist2.mean, ddist2.std print 'ana', ddist3.mean, ddist3.std ddist2.plot('/tmp/test_cond_norm1.pdf') ddist3.plot('/tmp/test_cond_norm2.pdf') print '\n>>> pareto\n' p = 0.5 a1 = 1.1 a2 = 1.2 x1 = [] x2 = [] y = [] for i in range(100000): r = np.random.random() if r < p: s = np.random.pareto(a1) x1.append(s) y.append(s) else: s = np.random.pareto(a2) + 10 x2.append(s) y.append(s) ddist0 = DDist.create(x1, tail=('p', 0.1), tnh=10) ddist1 = DDist.create(x2, tail=('p', 0.1), tnh=10) ddist2 = DDist.create(y) ddist3 = cond(p, ddist0, ddist1) print 'base1', ddist0.mean, ddist0.std print 'base2', ddist1.mean, ddist1.std print 'sim', ddist2.mean, ddist2.std print 'ana', ddist3.mean, ddist3.std ddist2.plot('/tmp/test_cond_pareto1.pdf') ddist3.plot('/tmp/test_cond_pareto2.pdf') print '===== end =====\n'
def testoodelay(): print '===== test oodelay =====\n' intvl = 30 def genexpointvl(): return np.random.exponential(intvl) def genfixedintvl(): return intvl lambd = 100 a = 1.8 m = 100 lb = 50 tb = 150 ub = 1000 def customlatency(): r = np.random.random() if r < 0.2: return 30 elif r < 0.4: return 60 elif r < 0.6: return 90 elif r < 0.8: return 120 else: return 180 def expolatency(): return np.random.exponential(lambd) def paretolatency(): return np.random.pareto(a) + m def uniformlatency(): r = np.random.random() if r < 0.8: rr = np.random.random() return lb + rr * (tb - lb) else: rr = np.random.random() return tb + rr * (ub - tb) intvlkeys = {'fixed': genfixedintvl, 'poisson': genexpointvl} intvlopts = {'fixed': 'fixed.interval', 'poisson': 'poisson.lambda'} latencykeys = { 'custom': customlatency, 'expo': expolatency, 'pareto': paretolatency, 'uniform': uniformlatency, } for ik in intvlkeys: for lk in latencykeys: print '\n>>> %s, %s\n' % (ik, lk) x, y = runoodelay(intvlkeys[ik], latencykeys[lk]) if lk == 'custom': ddist0 = DDist.create(x, h=30, tail=('b', 120), tnh=2) elif lk == 'expo': ddist0 = DDist.create(x, h=0.5) elif lk == 'uniform': ddist0 = DDist.create(x, h=0.5, tail=('b', 150), tnh=10) else: ddist0 = DDist.create(x, h=0.5, tail=('p', 0.1), tnh=10) if lk == 'custom': ddist1 = DDist.create(y, h=30) else: ddist1 = DDist.create(y, h=0.5) if ik == 'fixed': ddist2 = oodelay(ddist0, { 'arrival.process': 'fixed', 'fixed.interval': intvl }) else: ddist2 = oodelay(ddist0, { 'arrival.process': 'poisson', 'poisson.lambda': 1.0 / intvl }) print 'sim', ddist1.mean, ddist1.std print 'ana', ddist2.mean, ddist2.std if lk == 'custom': print 'sim pmf', ddist1.getPmfxy() print 'ana pmf', ddist2.getPmfxy() print '===== end =====\n'
def testQuorum(): print '===== test quorum =====' lambd = 50 a = 1.8 n = 5 f = 2 x = {'gen': [], 'exp': [], 'pareto': []} yc = {'gen': [], 'exp': [], 'pareto': []} yr = {'gen': [], 'exp': [], 'pareto': []} y = {'gen': [], 'exp': [], 'pareto': []} dists = ['gen', 'exp', 'pareto'] leader = 0 def gen(): r = np.random.random() if r < 0.2: return 1 elif r < 0.4: return 2 elif r < 0.6: return 3 elif r < 0.8: return 4 else: return 8 for i in range(100000): first = {} second = {} latencies = {'gen': [], 'exp': [], 'pareto': []} learner = np.random.randint(n) for acceptor in range(n): if leader == acceptor: for k in dists: first[k] = 0 else: first['gen'] = gen() first['exp'] = np.random.exponential(lambd) first['pareto'] = np.random.pareto(a) for k in dists: x[k].append(first[k]) if acceptor == learner: for k in dists: second[k] = 0 else: second['gen'] = gen() second['exp'] = np.random.exponential(lambd) second['pareto'] = np.random.pareto(a) for k in dists: x[k].append(second[k]) for k in dists: latencies[k].append(first[k] + second[k]) for k in dists: l = sorted(latencies[k]) y[k].append(l[n - f - 1]) if leader == learner: assert l[0] == 0 yc[k].append(l[n - f - 1]) else: yr[k].append(l[n - f - 1]) for k in dists: print '\n>>> %s\n' % k if k == 'gen': ddist0 = DDist.create(x[k], h=1, tail=('b', 4), tnh=4) elif k == 'exp': ddist0 = DDist.create(x[k], h=0.5) else: ddist0 = DDist.create(x[k], h=0.5, tail=('p', 0.1), tnh=20) print 'created ddist0' if k == 'gen': ddist1 = DDist.create(y[k], h=1, tail=('b', 8), tnh=4) ddistc1 = DDist.create(yc[k], h=1, tail=('b', 8), tnh=4) ddistr1 = DDist.create(yr[k], h=1, tail=('b', 8), tnh=4) print 'base pmf', ddist1.getPmfxy() print 'base c pmf', ddistc1.getPmfxy() print 'base r pmf', ddistr1.getPmfxy() else: ddist1 = DDist.create(y[k], h=0.05) ddistc1 = DDist.create(yc[k], h=0.05) ddistr1 = DDist.create(yr[k], h=0.05) ddist2 = quorum(n, f, ddist0) print 'computed quorum' rtrip = ddist0 + ddist0 ddistc2 = _quorumC(n - 1, n - f - 1, rtrip) ddistr2 = _quorumR(n, n - f, ddist0, rtrip) if k == 'gen': print 'q pmf', ddist2.getPmfxy() print 'q c pmf', ddistc2.getPmfxy() print 'q r pmf', ddistr2.getPmfxy() print 'latency', ddist0.mean, ddist0.std print 'quorum sim', ddist1.mean, ddist1.std print 'quorum c sim', ddistc1.mean, ddistc1.std print 'quorum r sim', ddistr1.mean, ddistr1.std print 'quorum ana', ddist2.mean, ddist2.std print 'quorum c ana', ddistc2.mean, ddistc2.std print 'quorum r ana', ddistr2.mean, ddistr2.std ddist1.plot('/tmp/test_quorum_%s1.pdf' % k) ddistc1.plot('/tmp/test_quorumc_%s1.pdf' % k) ddistr1.plot('/tmp/test_quorumr_%s1.pdf' % k) ddist2.plot('/tmp/test_quorum_%s2.pdf' % k) ddistc2.plot('/tmp/test_quorumc_%s2.pdf' % k) ddistr2.plot('/tmp/test_quorumr_%s2.pdf' % k) print '===== end =====\n'
def testoodelay(): print '===== test oodelay =====\n' intvl = 30 def genexpointvl(): return np.random.exponential(intvl) def genfixedintvl(): return intvl lambd = 100 a = 1.8 m = 100 lb = 50 tb = 150 ub = 1000 def customlatency(): r = np.random.random() if r < 0.2: return 30 elif r < 0.4: return 60 elif r < 0.6: return 90 elif r < 0.8: return 120 else: return 180 def expolatency(): return np.random.exponential(lambd) def paretolatency(): return np.random.pareto(a) + m def uniformlatency(): r = np.random.random() if r < 0.8: rr = np.random.random() return lb + rr * (tb - lb) else: rr = np.random.random() return tb + rr * (ub - tb) intvlkeys = {'fixed' : genfixedintvl, 'poisson' : genexpointvl} intvlopts = {'fixed' : 'fixed.interval', 'poisson' : 'poisson.lambda'} latencykeys = {'custom' : customlatency, 'expo' : expolatency, 'pareto' : paretolatency, 'uniform' : uniformlatency, } for ik in intvlkeys: for lk in latencykeys: print '\n>>> %s, %s\n'%(ik, lk) x, y = runoodelay(intvlkeys[ik], latencykeys[lk]) if lk == 'custom': ddist0 = DDist.create(x, h=30, tail=('b', 120), tnh=2) elif lk == 'expo': ddist0 = DDist.create(x, h=0.5) elif lk == 'uniform': ddist0 = DDist.create(x, h=0.5, tail=('b', 150), tnh=10) else: ddist0 = DDist.create(x, h=0.5, tail=('p', 0.1), tnh=10) if lk == 'custom': ddist1 = DDist.create(y, h=30) else: ddist1 = DDist.create(y, h=0.5) if ik == 'fixed': ddist2 = oodelay(ddist0, {'arrival.process' : 'fixed', 'fixed.interval' : intvl}) else: ddist2 = oodelay(ddist0, {'arrival.process' : 'poisson', 'poisson.lambda' : 1.0 / intvl}) print 'sim', ddist1.mean, ddist1.std print 'ana', ddist2.mean, ddist2.std if lk == 'custom': print 'sim pmf', ddist1.getPmfxy() print 'ana pmf', ddist2.getPmfxy() print '===== end =====\n'
def testQuorum(): print '===== test quorum =====' lambd = 50 a = 1.8 n = 5 f = 2 x = {'gen' : [], 'exp':[], 'pareto':[]} yc = {'gen' : [], 'exp':[], 'pareto':[]} yr = {'gen' : [], 'exp':[], 'pareto':[]} y = {'gen' : [], 'exp':[], 'pareto':[]} dists = ['gen', 'exp', 'pareto'] leader = 0 def gen(): r = np.random.random() if r < 0.2: return 1 elif r < 0.4: return 2 elif r < 0.6: return 3 elif r < 0.8: return 4 else: return 8 for i in range(100000): first = {} second = {} latencies = {'gen':[], 'exp':[], 'pareto':[]} learner = np.random.randint(n) for acceptor in range(n): if leader == acceptor: for k in dists: first[k] = 0 else: first['gen'] = gen() first['exp'] = np.random.exponential(lambd) first['pareto'] = np.random.pareto(a) for k in dists: x[k].append(first[k]) if acceptor == learner: for k in dists: second[k] = 0 else: second['gen'] = gen() second['exp'] = np.random.exponential(lambd) second['pareto'] = np.random.pareto(a) for k in dists: x[k].append(second[k]) for k in dists: latencies[k].append(first[k] + second[k]) for k in dists: l = sorted(latencies[k]) y[k].append(l[n - f - 1]) if leader == learner: assert l[0] == 0 yc[k].append(l[n - f - 1]) else: yr[k].append(l[n - f - 1]) for k in dists: print '\n>>> %s\n'%k if k == 'gen': ddist0 = DDist.create(x[k], h=1, tail=('b', 4), tnh=4) elif k == 'exp': ddist0 = DDist.create(x[k], h=0.5) else: ddist0 = DDist.create(x[k], h=0.5, tail=('p', 0.1), tnh=20) print 'created ddist0' if k == 'gen': ddist1 = DDist.create(y[k], h=1, tail=('b', 8), tnh=4) ddistc1 = DDist.create(yc[k], h=1, tail=('b', 8), tnh=4) ddistr1 = DDist.create(yr[k], h=1, tail=('b', 8), tnh=4) print 'base pmf', ddist1.getPmfxy() print 'base c pmf', ddistc1.getPmfxy() print 'base r pmf', ddistr1.getPmfxy() else: ddist1 = DDist.create(y[k], h=0.05) ddistc1 = DDist.create(yc[k], h=0.05) ddistr1 = DDist.create(yr[k], h=0.05) ddist2 = quorum(n, f, ddist0) print 'computed quorum' rtrip = ddist0 + ddist0 ddistc2 = _quorumC(n - 1, n - f - 1, rtrip) ddistr2 = _quorumR(n, n - f, ddist0, rtrip) if k == 'gen': print 'q pmf', ddist2.getPmfxy() print 'q c pmf', ddistc2.getPmfxy() print 'q r pmf', ddistr2.getPmfxy() print 'latency', ddist0.mean, ddist0.std print 'quorum sim', ddist1.mean, ddist1.std print 'quorum c sim', ddistc1.mean, ddistc1.std print 'quorum r sim', ddistr1.mean, ddistr1.std print 'quorum ana', ddist2.mean, ddist2.std print 'quorum c ana', ddistc2.mean, ddistc2.std print 'quorum r ana', ddistr2.mean, ddistr2.std ddist1.plot('/tmp/test_quorum_%s1.pdf'%k) ddistc1.plot('/tmp/test_quorumc_%s1.pdf'%k) ddistr1.plot('/tmp/test_quorumr_%s1.pdf'%k) ddist2.plot('/tmp/test_quorum_%s2.pdf'%k) ddistc2.plot('/tmp/test_quorumc_%s2.pdf'%k) ddistr2.plot('/tmp/test_quorumr_%s2.pdf'%k) print '===== end =====\n'