Exemple #1
0
 def cross_prob(ind_a, ind_b, mate_prob):
     new_ind_a = []
     new_ind_b = []
     for k in range(0,len(ind_a)):
         if rand() < mate_prob:
             new_ind_a.append(ind_b[k])
         else:
             new_ind_a.append(ind_a[k])
         if rand() < mate_prob:
             new_ind_b.append(ind_a[k])
         else:
             new_ind_b.append(ind_b[k])
     return (creator.individual(new_ind_a),creator.individual(new_ind_b)) 
Exemple #2
0
def generate_individual(creator, number_endmembers, number_pixels, number_rows,
                        number_columns):

    individual = numpy.random.choice(list(range(0, number_pixels)),
                                     number_endmembers)

    return creator.individual(individual)
Exemple #3
0
 def gaussian_mutation(individual, toolbox, number_rows, number_columns):
     gene_x = (np.array(individual) / number_rows).astype(int)
     gene_y = (np.array(individual) % number_rows)
     mut_x = abs(toolbox.gaussian_mutation_op(gene_x.copy())[0] % number_columns-1)
     mut_y = abs(toolbox.gaussian_mutation_op(gene_y.copy())[0] % number_rows-1)
     mutant = mut_x*number_rows+mut_y
     return creator.individual(mutant)
 def cross_hadamard(ind_a, ind_b, mate_prob, virtual_prob):
     new_ind_a = []
     new_ind_b = []
     for k in range(0,len(ind_a)):
         if rand() < mate_prob:
             if rand() < virtual_prob:
                 new_ind_a.append((ind_a[k][0],ind_b[k][1]))
             else:
                 new_ind_a.append(ind_b[k])
         else:
             new_ind_a.append(ind_a[k])
         if rand() < mate_prob:
             if rand() < virtual_prob:
                 new_ind_b.append((ind_b[k][0],ind_a[k][1]))
             else:
                 new_ind_b.append(ind_a[k])
         else:
             new_ind_b.append(ind_b[k])
     return (creator.individual(new_ind_a),creator.individual(new_ind_b)) 
Exemple #5
0
def GAEEII_IVFm(data, dimensions, number_endmembers):
    start_time = time.time()

    number_rows = int(dimensions[0])
    number_columns = int(dimensions[1])
    number_bands = int(dimensions[2])

    number_pixels = number_rows * number_columns

    sigma_MAX = max(number_rows, number_generations)

    data_proj = numpy.asarray(affine_projection(data, number_endmembers))

    creator.create("max_fitness", base.Fitness, weights=(-1.0, -1.0))
    creator.create("individual", list, fitness=creator.max_fitness)

    toolbox = base.Toolbox()
    toolbox.register("create_individual", generate_individual, creator,
                     number_endmembers, number_pixels, number_rows,
                     number_columns)
    toolbox.register("initialize_population", tools.initRepeat, list,
                     toolbox.create_individual)
    toolbox.register("evaluate_individual",
                     multi_fitness,
                     data=data,
                     data_proj=data_proj,
                     number_endmembers=number_endmembers)

    toolbox.register("cross_twopoints", tools.cxTwoPoint)
    toolbox.register("selNSGA2", tools.selNSGA2)

    toolbox.register("gaussian_mutation_op",
                     tools.mutGaussian,
                     mu=0,
                     sigma=0,
                     indpb=mutation_probability)
    toolbox.register("gaussian_mutation",
                     gaussian_mutation,
                     toolbox=toolbox,
                     number_rows=number_rows,
                     number_columns=number_columns)
    toolbox.register("random_mutation",
                     random_mutation,
                     number_pixels=number_pixels,
                     number_endmembers=number_endmembers,
                     mutation_probability=mutation_probability)

    population = toolbox.initialize_population(n=population_size)

    population_fitnesses = [
        toolbox.evaluate_individual(individual) for individual in population
    ]

    for individual, fitness in zip(population, population_fitnesses):
        individual.fitness.values = fitness

    hof = tools.HallOfFame(3)
    hof.update(population)

    current_generation = 0
    current_sigma = sigma_MAX
    generations_fitness_1 = []
    generations_fitness_2 = []
    generations_population = []
    stop_criteria = deque(maxlen=5)
    stop_criteria.extend([1, 2, 3, 4, 5])

    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean, axis=0)
    stats.register("std", numpy.std, axis=0)
    stats.register("min", numpy.min, axis=0)
    stats.register("max", numpy.max, axis=0)

    logbook = tools.Logbook()
    logbook.header = "gen", "evals", "std", "min", "avg", "max"

    record = stats.compile(population)
    logbook.record(gen=0, evals=len(population), **record)

    while current_generation < number_generations and numpy.var(
            numpy.array(stop_criteria)) > 0.000001:

        toolbox.unregister("gaussian_mutation_op")
        toolbox.register("gaussian_mutation_op",
                         tools.mutGaussian,
                         mu=0,
                         sigma=current_sigma,
                         indpb=mutation_probability)

        offspring = tools.selRandom(population, k=int(population_size / 2))
        offspring = list(map(toolbox.clone, offspring))

        # Crossing
        for child_1, child_2 in zip(offspring[::2], offspring[1::2]):
            if random.random() < crossing_probability:
                toolbox.cross_twopoints(child_1, child_2)
                del child_1.fitness.values
                del child_2.fitness.values
        # Mutation
        for mutant in offspring:
            if random.random() < mutation_probability:
                toolbox.gaussian_mutation(mutant)
                del mutant.fitness.values

        # Fitness
        offspring_fitnesses = [
            toolbox.evaluate_individual(individual) for individual in offspring
        ]
        for individual, fitness in zip(offspring, offspring_fitnesses):
            individual.fitness.values = fitness

        # In Vitro Fertilization Module
        ivfoffspring = list(map(toolbox.clone, population))
        ivffits = [ind.fitness.values[0] for ind in ivfoffspring]
        fatheridx = numpy.argmax(ivffits)
        # fatherfit = numpy.max(ivffits)
        father = creator.individual(ivfoffspring[fatheridx].copy())

        for ind in ivfoffspring[::2]:
            toolbox.random_mutation(ind)
            del ind.fitness.values

        for child1 in ivfoffspring:
            child2 = creator.individual(father.copy())
            toolbox.cross_twopoints(child1, child2)
            del child1.fitness.values
            del child2.fitness.values

        ivffitnesses = [
            toolbox.evaluate_individual(ind) for ind in ivfoffspring
        ]
        for ind, fit in zip(ivfoffspring, ivffitnesses):
            ind.fitness.values = fit

        popmax = max(offspring_fitnesses)
        for ind in ivfoffspring:
            if (ind.fitness.values >= popmax):
                population.append(ind)

        new_population = population + offspring

        # Selection
        selected = toolbox.selNSGA2(new_population, population_size)
        selected = list(map(toolbox.clone, selected))

        population[:] = selected

        hof.update(population)

        record = stats.compile(population)
        logbook.record(gen=current_generation, evals=len(population), **record)
        # print(logbook.stream)

        # Statistics
        fits_1 = [ind.fitness.values[0] for ind in population]
        fits_2 = [ind.fitness.values[1] for ind in population]

        mean_1_offspring = sum(fits_1) / len(population)
        mean_2_offspring = sum(fits_2) / len(population)

        generations_fitness_1.append(numpy.log10(mean_1_offspring))
        generations_fitness_2.append(numpy.log(mean_2_offspring))

        stop_criteria.append(numpy.log10(mean_1_offspring))

        generations_population.append(population.copy())

        current_generation += 1
        current_sigma = sigma_MAX / ((current_generation + 1) / 1.5)

    best_individual = tools.selNSGA2(population, 1)[0]

    # print('Result:', multi_fitness(best_individual,data, data_proj, number_endmembers))

    M = data[:, best_individual]
    duration = time.time() - start_time

    return M, duration, [
        generations_fitness_1, generations_fitness_2, generations_population,
        current_generation
    ]
Exemple #6
0
def GAEEII(data, dimensions, number_endmembers):
    start_time = time.time()
    population_size = 10
    number_generations = 100
    crossing_probability = 1
    mutation_probability = 0.5
    stop_criteria_MAX = 20
    random.seed(64)

    number_endmembers = number_endmembers

    number_rows = int(dimensions[0])
    number_columns = int(dimensions[1])
    number_bands = int(dimensions[2])

    number_pixels = number_rows * number_columns

    sigma_MAX = max(number_rows, number_generations)

    data_proj = numpy.asarray(affine_tranform(data, number_endmembers))

    # data = numpy.asarray(data)
    # _coeff, score, _latent = princomp(data.T)
    # data_proj = numpy.squeeze(score[0:number_endmembers,:])

    creator.create("min_fitness", base.Fitness, weights=(1.0, ))
    creator.create("individual", list, fitness=creator.min_fitness)

    toolbox = base.Toolbox()
    toolbox.register("create_individual", generate_individual, creator,
                     number_endmembers, number_pixels, number_rows,
                     number_columns)
    toolbox.register("initialize_population", tools.initRepeat, list,
                     toolbox.create_individual)
    toolbox.register("evaluate_individual",
                     multi_fitness,
                     data=data,
                     data_proj=data_proj,
                     number_endmembers=number_endmembers)

    toolbox.register("cross_twopoints", tools.cxTwoPoint)
    toolbox.register("selNSGA2", tools.selNSGA2)

    toolbox.register("gaussian_mutation_op",
                     tools.mutGaussian,
                     mu=0,
                     sigma=0,
                     indpb=mutation_probability)
    toolbox.register("gaussian_mutation",
                     gaussian_mutation,
                     toolbox=toolbox,
                     number_rows=number_rows,
                     number_columns=number_columns)

    population = toolbox.initialize_population(n=population_size)

    ensemble_pop = []
    for i in range(0, 5):
        [_, duration, other] = classical.VCA(data, dimensions,
                                             number_endmembers)
        # print(other[0])
        # print('Time GAEE:',duration)
        ensemble_pop.append(creator.individual(other[0]))

    population[5:] = ensemble_pop

    population_fitnesses = [
        toolbox.evaluate_individual(individual) for individual in population
    ]

    for individual, fitness in zip(population, population_fitnesses):
        individual.fitness.values = fitness

    hof = tools.HallOfFame(3)
    hof.update(population)

    current_generation = 0
    current_sigma = sigma_MAX
    generations_fitness_1 = []
    generations_fitness_2 = []
    generations_population = []
    stop_criteria = deque(maxlen=stop_criteria_MAX)
    stop_criteria.extend(list(range(1, stop_criteria_MAX)))

    while current_generation < number_generations and numpy.var(
            numpy.array(stop_criteria)) > 0.000001:

        toolbox.unregister("gaussian_mutation_op")
        toolbox.register("gaussian_mutation_op",
                         tools.mutGaussian,
                         mu=0,
                         sigma=current_sigma,
                         indpb=mutation_probability)

        offspring = tools.selRandom(population, k=int(population_size / 2))
        offspring = list(map(toolbox.clone, offspring))

        # Crossing
        for child_1, child_2 in zip(offspring[::2], offspring[1::2]):
            if random.random() < crossing_probability:
                toolbox.cross_twopoints(child_1, child_2)
                del child_1.fitness.values
                del child_2.fitness.values
        # Mutation
        for mutant in offspring:
            if random.random() < mutation_probability:
                toolbox.gaussian_mutation(mutant)
                del mutant.fitness.values

        # Fitness
        offspring_fitnesses = [
            toolbox.evaluate_individual(individual) for individual in offspring
        ]
        for individual, fitness in zip(offspring, offspring_fitnesses):
            individual.fitness.values = fitness

        new_population = population + offspring

        # Selection
        selected = toolbox.selNSGA2(new_population, population_size)
        selected = list(map(toolbox.clone, selected))

        population[:] = selected

        hof.update(population)

        # Statistics
        fits_1 = [ind.fitness.values[0] for ind in population]
        # fits_2 = [ind.fitness.values[1] for ind in population]

        mean_1_offspring = sum(fits_1) / len(population)
        # mean_2_offspring = sum(fits_2) / len(population)

        generations_fitness_1.append(numpy.log10(mean_1_offspring))
        # generations_fitness_2.append(numpy.log(mean_2_offspring))

        generations_population.append(population.copy())

        stop_criteria.append(numpy.log10(mean_1_offspring))

        current_generation += 1
        current_sigma = sigma_MAX / ((current_generation + 1) / 4)

    best_individual = tools.selBest(population, 1)[0]
    # best_individual = hof[0]

    # print('Result:', multi_fitness(best_individual,data, data_proj,number_endmembers))

    M = data[:, best_individual]

    duration = time.time() - start_time

    return M, duration, [
        generations_fitness_1, generations_fitness_2, generations_population,
        current_generation
    ]
Exemple #7
0
def GAEE_IVFm(data, dimensions, number_endmembers):
    start_time = time.time()

    number_rows = int(dimensions[0])
    number_columns = int(dimensions[1])
    number_bands = int(dimensions[2])
    number_pixels = number_rows * number_columns

    tournsize = 3

    data = numpy.asarray(data)
    _coeff, score, _latent = princomp(data.T)
    data_pca = numpy.squeeze(score[0:number_endmembers - 1, :])

    creator.create("max_fitness", base.Fitness, weights=(1.0, ))
    creator.create("individual", list, fitness=creator.max_fitness)

    toolbox = base.Toolbox()
    toolbox.register("create_individual", generate_individual, creator,
                     number_endmembers, number_pixels, number_rows,
                     number_columns)
    toolbox.register("initialize_population", tools.initRepeat, list,
                     toolbox.create_individual)
    toolbox.register("evaluate_simplex_volume",
                     mono_fitness,
                     data_pca=data_pca,
                     number_endmembers=number_endmembers)

    toolbox.register("cross_twopoints", tools.cxTwoPoint)

    toolbox.register("tournament_select",
                     tools.selTournament,
                     tournsize=tournsize)
    toolbox.register("random_mutation",
                     random_mutation,
                     number_pixels=number_pixels,
                     number_endmembers=number_endmembers,
                     mutation_probability=mutation_probability)

    population = toolbox.initialize_population(n=population_size)

    population_fitnesses = [
        toolbox.evaluate_simplex_volume(individual)
        for individual in population
    ]

    for individual, fitness in zip(population, population_fitnesses):
        individual.fitness.values = fitness

    current_generation = 0
    generations_fitness = []
    generations_population = []
    stop_criteria = deque(maxlen=5)
    stop_criteria.extend([1, 2, 3, 4, 5])

    while current_generation < number_generations and numpy.var(
            numpy.array(stop_criteria)) > 0.000001:

        offspring = list(map(toolbox.clone, population))

        # Crossing
        for child_1, child_2 in zip(offspring[::2], offspring[1::2]):
            if random.random() < crossing_probability:
                toolbox.cross_twopoints(child_1, child_2)
                del child_1.fitness.values
                del child_2.fitness.values
        # Mutation
        for mutant in offspring:
            if random.random() < mutation_probability:
                toolbox.random_mutation(mutant)
                del mutant.fitness.values

        # Fitness
        offspring_fitnesses = [
            toolbox.evaluate_simplex_volume(individual)
            for individual in offspring
        ]
        for individual, fitness in zip(offspring, offspring_fitnesses):
            individual.fitness.values = fitness

        # In Vitro Fertilization Module
        ivfoffspring = list(map(toolbox.clone, population))
        ivffits = [ind.fitness.values[0] for ind in ivfoffspring]
        fatheridx = numpy.argmax(ivffits)
        fatherfit = numpy.max(ivffits)
        father = creator.individual(ivfoffspring[fatheridx].copy())

        for ind in ivfoffspring[::2]:
            toolbox.random_mutation(ind)
            del ind.fitness.values

        for child1 in ivfoffspring:
            child2 = creator.individual(father.copy())
            toolbox.cross_twopoints(child1, child2)
            del child1.fitness.values
            del child2.fitness.values

        ivffitnesses = [
            toolbox.evaluate_simplex_volume(ind) for ind in ivfoffspring
        ]
        for ind, fit in zip(ivfoffspring, ivffitnesses):
            ind.fitness.values = fit

        popmax = max(offspring_fitnesses)
        for ind in ivfoffspring:
            if (ind.fitness.values >= popmax):
                population.append(ind)

        new_population = population + offspring

        # Selection
        selected = toolbox.tournament_select(new_population, population_size)
        population_selected = list(map(toolbox.clone, selected))

        population[:] = population_selected

        # Statistics
        fits = [ind.fitness.values[0] for ind in population]
        mean_offspring = sum(fits) / len(population)
        generations_fitness.append(numpy.log10(mean_offspring))
        generations_population.append(population.copy())

        stop_criteria.append(numpy.log10(mean_offspring))

        current_generation += 1

    best_individual = tools.selBest(population, 1)[0]
    # print(best_individual)

    M = data[:, best_individual]
    duration = time.time() - start_time

    return M, duration, [
        generations_fitness, generations_population, current_generation
    ]