Exemple #1
0
def main(number):

    random.seed(4)
    N_ISLES = number
    FREQ = 5
    pob = int(500 / number)
    islands = [toolbox.population(n=pob) for i in range(N_ISLES)]

    toolbox.unregister("indices")
    toolbox.unregister("individual")
    toolbox.unregister("population")

    toolbox.register("alg_scoop",
                     algorithms.eaSimple,
                     toolbox=toolbox,
                     cxpb=0.8,
                     mutpb=0.2,
                     ngen=5,
                     verbose=False)

    start_time = time.time()
    for i in range(0, 400, FREQ):
        results = futures.map(toolbox.alg_scoop, islands)
        islands = [pop for pop, logbook in results]
        tools.migRing(islands, 15, tools.selBest)

    print("--- %s seconds ---" % (time.time() - start_time))
    return "finished"
def main():
    start = time.time()
    random.seed(64)
    NISLES = 100
    islands = [toolbox.population(n=300) for i in range(NISLES)]

    # Unregister unpicklable methods before sending the toolbox.
    toolbox.unregister("attr_bool")
    toolbox.unregister("individual")
    toolbox.unregister("population")

    NGEN, FREQ = 40, 5
    toolbox.register("algorithm",
                     algorithms.eaSimple,
                     toolbox=toolbox,
                     cxpb=0.5,
                     mutpb=0.2,
                     ngen=FREQ,
                     verbose=False)
    registration_time = time.time()
    for i in range(0, NGEN, FREQ):
        results = toolbox.map(toolbox.algorithm, islands)
        islands = [pop for pop, logbook in results]
        tools.migRing(islands, 1, tools.selBest)

    end = time.time()
    #print(islands)
    print("start time: ")
    print(start)
    print("registration_time:")
    print(registration_time)
    print("end time: ")
    print(end)
def parallel_evolution():
    print_infos()
    islands = [toolbox.population(n=POP_SIZE) for i in range(N_ISLES)]
    with Parallel(n_jobs=N_JOBS) as parallel:
        hof = tools.ParetoFront()
        it = 0
        while it == 0 or (it < N_GEN
                          and not stop_cond(islands, STOP_CONDITION)):
            #for i in range(0, generations, migration_interval):
            print("\nIteration: " + str(it))
            res = parallel(
                delayed(single_evolver)
                (pop=island, n_gen=MIGRATION_INTERVAL, hof=hof, verbose=True)
                for island in islands)
            islands = []
            for pop, logbook, hofi in res:
                hof.update(pop)
                islands.append(pop)
            tools.migRing(islands, N_MIGRATION,
                          tools.selBest) if N_ISLES > 1 else 0
            it += MIGRATION_INTERVAL
    #for island in islands:
    #    print_output(island, it)
    #print_output(hof, it,n_ind=N_ISLES)
    return hof
Exemple #4
0
def multi_islands():
    random.seed(64)
    NISLES = 6
    islands = [toolbox.population(n=300) for i in range(NISLES)]
    # Unregister unpicklable methods before sending the toolbox.
    toolbox.unregister("attr_AP")
    toolbox.unregister("individual")
    toolbox.unregister("population")

    NGEN, FREQ = 50, 5
    toolbox.register("algorithm",
                     algorithms.eaSimple,
                     toolbox=toolbox,
                     cxpb=0.5,
                     mutpb=0.2,
                     ngen=FREQ,
                     verbose=False)
    for i in range(0, NGEN, FREQ):
        results = toolbox.map(toolbox.algorithm, islands)
        islands = [pop for pop, logbook in results]
        tools.migRing(islands, 15, tools.selBest)

    for island in islands:
        best_inds = tools.selBest(island, 1)
        for best_ind in best_inds:
            print("Best individual is:\n\t %s\n\t %s" %
                  (best_ind, best_ind.fitness.values))
            eval = SolutionEvaluer()
            eval.plot(best_ind)
            print("")
    return islands
Exemple #5
0
def main():
    population = toolbox.populationCreator(n=POPULATION_SIZE)
    random.seed(64)
    NISLES = 6

    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("min", np.min)
    stats.register("avg", np.mean)

    logbook = tools.Logbook()
    logbook.header = "gen", "evals", "min", "avg"

    hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

    NGEN, FREQ = 40, 30

    toolbox.register("algorithm",
                     algorithms.eaSimple,
                     toolbox=toolbox,
                     cxpb=P_CROSSOVER,
                     mutpb=P_MUTATION,
                     ngen=MAX_GENERATIONS,
                     stats=stats,
                     halloffame=hof,
                     verbose=True)

    islands = [population for i in range(NISLES)]

    for i in range(0, MAX_GENERATIONS, FREQ):
        results = toolbox.map(toolbox.algorithm, islands)
        islands = [population for population, logbook in results]
        tools.migRing(islands, 25, tools.selBest)

        record = stats.compile(population)
        logbook.record(gen=i, evals=len(population), **record)
        hof.update(population)
        best = hof.items[0]

        print(i)
        print("-- Best Ever Individual = ", best)
        print("-- Best Ever Fitness = ", best.fitness.values[0])

        if i == FREQ:
            plt.figure(1)
            tsp.plotData(best)

            minFitnessValues, meanFitnessValues = logbook.select("min", "avg")
            plt.figure(2)
            sns.set_style("whitegrid")
            plt.plot(minFitnessValues, color='red')
            plt.plot(meanFitnessValues, color='green')
            plt.xlabel('Generation')
            plt.ylabel('Min / Average Fitness')
            plt.title('Min and Average fitness over Generations')

            plt.show()

    return islands
def main():
    random.seed(64)
    NISLES = 5
    islands = [toolbox.population(n=300) for i in range(NISLES)]

    # Unregister unpicklable methods before sending the toolbox.
    toolbox.unregister("attr_bool")
    toolbox.unregister("individual")
    toolbox.unregister("population")

    NGEN, FREQ = 40, 5
    toolbox.register("algorithm", algorithms.eaSimple, toolbox=toolbox, 
                     cxpb=0.5, mutpb=0.2, ngen=FREQ, verbose=False)
    for i in range(0, NGEN, FREQ):
        results = toolbox.map(toolbox.algorithm, islands)
        islands = [pop for pop, logbook in results]
        tools.migRing(islands, 15, tools.selBest)

    return islands
Exemple #7
0
def main():
    random.seed(64)
    NISLES = 5
    islands = [toolbox.population(n=300) for i in range(NISLES)]

    # Unregister unpicklable methods before sending the toolbox.
    toolbox.unregister("attr_bool")
    toolbox.unregister("individual")
    toolbox.unregister("population")

    NGEN, FREQ = 40, 5
    toolbox.register("algorithm",
                     algorithms.eaSimple,
                     toolbox=toolbox,
                     cxpb=0.5,
                     mutpb=0.2,
                     ngen=FREQ,
                     verbose=False)
    for i in range(0, NGEN, FREQ):
        results = toolbox.map(toolbox.algorithm, islands)
        islands = [pop for pop, logbook in results]
        tools.migRing(islands, 15, tools.selBest)

    return islands
Exemple #8
0
	size = comm.Get_size()
	rank = comm.Get_rank()

	random.seed(4)
	N_ISLES = size
	FREQ = 5
	
	if rank == 0:
		pob = int(500/N_ISLES)	
		islands = [toolbox.population(n=pob) for i in range(N_ISLES)]
	else:
		islands = None


	toolbox.unregister("indices")
	toolbox.unregister("individual")
	toolbox.unregister("population")

	if rank == 0 :
		start_time = time.time()
	for i in range (0, 400, FREQ):
		islands = comm.scatter(islands,root = 0)
		resultsT =  algorithms.eaSimple(islands,toolbox=toolbox, cxpb=0.8, mutpb=0.2, ngen=5, verbose=False)
		results = comm.gather(resultsT,root=0)
		if rank== 0:
			islands = [pop for pop, logbook in results]
			tools.migRing(islands, 15, tools.selBest)

	if rank == 0:
		print("--- %s seconds ---" % (time.time() - start_time))
Exemple #9
0
        start_time = time.perf_counter()
        for it in range(max_iter):

            for island in controlIslands:
                island.evolution_step()

            for island in islands:
                island.evolution_step()

            # migrate
            if np.random.rand() < migration_probability:
                populations = [
                    island.get_population() for island in controlIslands
                ]
                tools.migRing(populations,
                              k=3,
                              selection=toolbox.selectMig,
                              replacement=toolbox.selectRepl)

                populations = [island.get_population() for island in islands]
                tools.migRing(populations,
                              k=3,
                              selection=toolbox.selectMig,
                              replacement=toolbox.selectRepl)

            positions = [island.estimate_position()[0] for island in islands]
            mean_position_std = np.std(positions)
            diversity_logger.info("{}, {}".format(it, mean_position_std))

        results = [island.get_results() for island in islands]

        best_result = min([island.get_avg_fitness() for island in islands])
Exemple #10
0
        def __call__(self, fixed_schedule_part, initial_schedule, current_time=0, initial_population=None, only_new_pops=False):



            ##==========================
            ## create populations
            ##==========================


            ##TODO: remake it
            creator.create("FitnessMax", base.Fitness, weights=(1.0,))
            creator.create("Individual", dict, fitness=creator.FitnessMax)

            toolbox = base.Toolbox()
            toolbox.register("evaluate", ga_functions.build_fitness(fixed_schedule_part, current_time))
            toolbox.register("attr_bool", ga_functions.build_initial(fixed_schedule_part, current_time))
            # Structure initializers
            toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.attr_bool)
            toolbox.register("population", tools.initRepeat, list, toolbox.individual)

            ## TODO: replace it with strategy and specilized builder
            if only_new_pops is True:
                ## TODO: replace this magic number with parameter
                populations = [toolbox.population(n=POPSIZE) for i in range(3)]
            else:
                ## create populations
                old_pop = initial_population
                newpop = toolbox.population(n=POPSIZE)
                #heft_initial = GAFunctions2.schedule_to_chromosome(initial_schedule)
                # TODO: this is a stub. Rearchitect information flows and entities responsibilities as soon as you will get the first positive results.
                heft_initial = initial_schedule
                heft_initial = tools.initIterate(creator.Individual, lambda: heft_initial)
                heft_pop = [ga_functions.mutation(deepcopy(heft_initial)) for i in range(POPSIZE)]
                populations = [old_pop, newpop, heft_pop]

            ## TODO: replace this more effective implementation
            def quick_save():
                whole_pop = reduce(lambda x, y: x+y, populations)
                ## choose new old pop for the next run
                sorted_whole_pop = sorted(whole_pop, key=lambda x: x.fitness.values, reverse=True)
                best = sorted_whole_pop[0]
                new_oldpop = sorted_whole_pop[0:POPSIZE]

                ## construct final result
                ## TODO: implement constructor of final result here
                result = ((best, new_oldpop, None, None), common_logbook)
                self._save_result(result)
                return result



            ##==========================
            ## run for several migration periods
            ##==========================
            common_logbook = tools.Logbook()
            result = None
            for k in range(MIGRATIONS):
                new_pops = []
                iter_map = {}

                for pop in populations:
                    ((best, npop, schedule, stopped_iteration), logbook) = ga_alg(fixed_schedule_part,
                           None,
                           current_time=current_time,
                           initial_population=pop)
                    new_pops.append(npop)
                    for rec in logbook:
                        iter = k*GENERATIONS + rec["iter"]
                        mp = iter_map.get(iter, [])
                        mp.append({"worst": rec["worst"], "best": rec["best"], "avr": rec["avr"]})
                        iter_map[iter] = mp
                        pass
                for iter, items in iter_map.items():
                    best = max(it["best"] for it in items)
                    avr = sum(it["avr"] for it in items)/len(items)
                    worst = min(it["worst"] for it in items)
                    common_logbook.record(iter=iter, worst=worst, best=best, avr=avr)
                    pass
                populations = new_pops
                migRing(populations, migrCount, emigrant_selection)
                result = quick_save()
                pass

            # merge all populations in one and evaluate for some time
            # TODO: test this changes
            common_pop = functools.reduce(operator.add, populations, [])
            for k in range(MERGED_POP):
                ((best, npop, schedule, stopped_iteration), logbook) = ga_alg(fixed_schedule_part,
                           None,
                           current_time=current_time,
                           initial_population=common_pop)
                common_pop = npop
                for rec in logbook:
                    iter = (all_iters_count - MERGED_POP) + rec["iter"]
                    common_logbook.record(iter=iter, worst=rec["worst"], best=rec["best"], avr=rec["avr"])
                    pass
                result = quick_save()
                pass

            ((best, new_oldpop, x1, x2), x3) = result
            result = ((best, new_oldpop, ga_functions.build_schedule(best, fixed_schedule_part, current_time), None), common_logbook)
            self._save_result(result[0])
            return result
Exemple #11
0
        def __call__(self,
                     fixed_schedule_part,
                     initial_schedule,
                     current_time=0,
                     initial_population=None,
                     only_new_pops=False):
            ##==========================
            ## create populations
            ##==========================
            ##TODO: remake it
            creator.create("FitnessMax", base.Fitness, weights=(1.0, ))
            creator.create("Individual", dict, fitness=creator.FitnessMax)

            toolbox = base.Toolbox()
            toolbox.register(
                "evaluate",
                ga_functions.build_fitness(fixed_schedule_part, current_time))
            toolbox.register(
                "attr_bool",
                ga_functions.build_initial(fixed_schedule_part, current_time))
            # Structure initializers
            toolbox.register("individual", tools.initIterate,
                             creator.Individual, toolbox.attr_bool)
            toolbox.register("population", tools.initRepeat, list,
                             toolbox.individual)

            ## TODO: replace it with strategy and specilized builder
            if only_new_pops is True:
                ## TODO: replace this magic number with parameter
                populations = [toolbox.population(n=POPSIZE) for i in range(3)]
            else:
                ## create populations
                old_pop = initial_population
                newpop = toolbox.population(n=POPSIZE)
                #heft_initial = GAFunctions2.schedule_to_chromosome(initial_schedule)
                # TODO: this is a stub. Rearchitect information flows and entities responsibilities as soon as you will get the first positive results.
                heft_initial = initial_schedule if not isinstance(
                    initial_schedule,
                    Schedule) else GAFunctions2.schedule_to_chromosome(
                        initial_schedule, fixed_schedule_part)
                heft_initial = tools.initIterate(creator.Individual,
                                                 lambda: heft_initial)
                heft_pop = [
                    ga_functions.mutation(deepcopy(heft_initial))
                    for i in range(POPSIZE)
                ]
                populations = [old_pop, newpop, heft_pop]

            ## TODO: replace this more effective implementation
            def quick_save():
                whole_pop = reduce(lambda x, y: x + y, populations)
                ## choose new old pop for the next run
                sorted_whole_pop = sorted(whole_pop,
                                          key=lambda x: x.fitness.values,
                                          reverse=True)
                best = sorted_whole_pop[0]
                new_oldpop = sorted_whole_pop[0:POPSIZE]

                ## construct final result
                ## TODO: implement constructor of final result here
                result = ((best, new_oldpop, None, None), common_logbook)
                self._save_result(result)
                return result

            ##==========================
            ## run for several migration periods
            ##==========================
            common_logbook = tools.Logbook()
            result = None
            for k in range(MIGRATIONS):
                new_pops = []
                iter_map = {}

                for pop in populations:
                    ((best, npop, schedule, stopped_iteration),
                     logbook) = ga_alg(fixed_schedule_part,
                                       None,
                                       current_time=current_time,
                                       initial_population=pop)
                    new_pops.append(npop)
                    # for rec in logbook:
                    #     iter = k*GENERATIONS + rec["iter"]
                    #     mp = iter_map.get(iter, [])
                    #     mp.append({"worst": rec["worst"], "best": rec["best"], "avr": rec["avr"]})
                    #     iter_map[iter] = mp
                    #     pass
                for iter, items in iter_map.items():
                    best = max(it["best"] for it in items)
                    avr = sum(it["avr"] for it in items) / len(items)
                    worst = min(it["worst"] for it in items)
                    common_logbook.record(iter=iter,
                                          worst=worst,
                                          best=best,
                                          avr=avr)
                    pass
                populations = new_pops
                migRing(populations, migrCount, emigrant_selection)
                result = quick_save()
                pass

            # merge all populations in one and evaluate for some time
            # TODO: test this changes
            common_pop = functools.reduce(operator.add, populations, [])
            for k in range(MERGED_POP):
                ((best, npop, schedule, stopped_iteration),
                 logbook) = ga_alg(fixed_schedule_part,
                                   None,
                                   current_time=current_time,
                                   initial_population=common_pop)
                common_pop = npop
                # for rec in logbook:
                #     iter = (all_iters_count - MERGED_POP) + rec["iter"]
                #     common_logbook.record(iter=iter, worst=rec["worst"], best=rec["best"], avr=rec["avr"])
                #     pass
                result = quick_save()
                pass

            ((best, new_oldpop, x1, x2), x3) = result
            result = ((best, new_oldpop,
                       ga_functions.build_schedule(best, fixed_schedule_part,
                                                   current_time), None),
                      common_logbook)
            self._save_result(result[0])
            return result