verbose=5) model.fit(X_train, y_train) best_params = model.best_params_ score_test = model.score(X_test, y_test) score_train = model.score(X_train, y_train) y_hat = model.predict(X_test) filename_model = Directory.model_filename(method, language, library, normalization, score_test, augmentation=augment, json=False) + 'model.json' JSON.create_json_file(file=filename_model, data=globals()['build_' + method]().to_json()) # SALVA ACURÁCIAS E PARAMETROS Model.dump_grid(Directory.model_filename(method, language, library, normalization, score_test, augmentation=augment), model=model,
args = Terminal.get_args() language = 'portuguese' method = 'svm' library = 'psf' people = args['people'] segments = args['segments'] normalization = args['normalization'] augment = args['augmentation'] sampling_rate = 24000 random_state = 42 filename_holder = Directory.model_filename(method=method, language=language, library=library, normalization=normalization, augmentation=augment, json=False, models=True) info = json.load(open(filename_holder + 'info.json', 'r')) scaler = load(open(filename_holder + 'scaler.pkl', 'rb')) model = load(open(filename_holder + 'model.h5', 'rb')) signal, rate = librosa.load(args['inferencia'], sr=sampling_rate) # signal = Audio.trim(signal) segment_time = 5 signal = signal[:len(signal) - len(signal) % (rate * segment_time)]
model.fit(X_train, y_train) best_params = model.best_params_ score_test = model.score(X_test, y_test) score_train = model.score(X_train, y_train) y_hat = model.predict(X_test) filename_ps = Directory.verify_people_segments( people=people, segments=segments) # SALVA ACURÁCIAS E PARAMETROS Model.dump_grid( Directory.model_filename( 'svm', language, library, normalization, score_test, augmentation=augment), model=model, language=language, method='Support Vector Machines', normalization=normalization, sampling_rate=sampling_rate, augmentation=augment, shape=X_train.shape, seed=random_state, library=library, sizes=[len(X_train), len(X_valid), len(X_test)], score_train=score_train, score_test=score_test, )
model = GridSearchCV( estimator=kc, param_grid=param_grid, n_jobs=-1, cv=5) model.fit(X_train, y_train) best_params = model.best_params_ score_test = model.score(X_test, y_test) score_train = model.score(X_train, y_train) y_hat = model.predict(X_test) filename_model = Directory.model_filename( 'cnn', language, library, normalization, score_test, json=False)+'model.json' JSON.create_json_file( file=filename_model, data=build_model().to_json() ) # SALVA ACURÁCIAS E PARAMETROS Model.dump_grid( Directory.model_filename( 'cnn', language, library, normalization, score_test), model=model, language=language, method='CNN', normalization=normalization, sampling_rate=sampling_rate,