def build_encoder(self, optimizer, loss_function):

        encoder = NeuralNetwork(optimizer=optimizer, loss=loss_function)
        encoder.add(Dense(512, input_shape=(self.img_dim, )))
        encoder.add(Activation('leaky_relu'))
        encoder.add(BatchNormalization(momentum=0.8))
        encoder.add(Dense(256))
        encoder.add(Activation('leaky_relu'))
        encoder.add(BatchNormalization(momentum=0.8))
        encoder.add(Dense(self.latent_dim))

        return encoder
Exemple #2
0
    def build_discriminator(self, optimizer, loss_function):

        model = NeuralNetwork(optimizer=optimizer, loss=loss_function)

        model.add(Dense(512, input_shape=(self.img_dim, )))
        model.add(Activation('leaky_relu'))
        model.add(Dropout(0.5))
        model.add(Dense(256))
        model.add(Activation('leaky_relu'))
        model.add(Dropout(0.5))
        model.add(Dense(2))
        model.add(Activation('softmax'))

        return model
    def build_discriminator(self, optimizer, loss_function):

        model = NeuralNetwork(optimizer=optimizer, loss=loss_function)

        model.add(
            Conv2D(32,
                   filter_shape=(3, 3),
                   stride=2,
                   input_shape=self.img_shape,
                   padding='same'))
        model.add(Activation('leaky_relu'))
        model.add(Dropout(0.25))
        model.add(Conv2D(64, filter_shape=(3, 3), stride=2, padding='same'))
        model.add(ZeroPadding2D(padding=((0, 1), (0, 1))))
        model.add(Activation('leaky_relu'))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(128, filter_shape=(3, 3), stride=2, padding='same'))
        model.add(Activation('leaky_relu'))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(256, filter_shape=(3, 3), stride=1, padding='same'))
        model.add(Activation('leaky_relu'))
        model.add(Dropout(0.25))
        model.add(Flatten())
        model.add(Dense(2))
        model.add(Activation('softmax'))

        return model
Exemple #4
0
    def build_generator(self, optimizer, loss_function):

        model = NeuralNetwork(optimizer=optimizer, loss=loss_function)

        model.add(Dense(256, input_shape=(self.latent_dim, )))
        model.add(Activation('leaky_relu'))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(Activation('leaky_relu'))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(Activation('leaky_relu'))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(self.img_dim))
        model.add(Activation('tanh'))

        return model
    def build_generator(self, optimizer, loss_function):

        model = NeuralNetwork(optimizer=optimizer, loss=loss_function)

        model.add(Dense(128 * 7 * 7, input_shape=(100, )))
        model.add(Activation('leaky_relu'))
        model.add(Reshape((128, 7, 7)))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(128, filter_shape=(3, 3), padding='same'))
        model.add(Activation("leaky_relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(64, filter_shape=(3, 3), padding='same'))
        model.add(Activation("leaky_relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(1, filter_shape=(3, 3), padding='same'))
        model.add(Activation("tanh"))

        return model
def main():
    #load data
    X = np.loadtxt("data/input.txt")
    y = np.loadtxt("data/output.txt")
    # data = get_data("data.csv")
    # X,y = preprocessing(data)
    n_samples, n_features = X.shape

    X = min_max_scaler(X)

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        0.1,
                                                        shuffle=True,
                                                        seed=1000)
    X_train, X_val, y_train, y_val = train_test_split(X_train,
                                                      y_train,
                                                      0.1,
                                                      shuffle=True,
                                                      seed=1000)
    validation_data = (X_val, y_val)

    GD = GradientDescent(0.001)
    SGD = StochasticGradientDescent(learning_rate=0.001,
                                    momentum=0.9,
                                    nesterov=False)
    SGD_nes = StochasticGradientDescent(learning_rate=0.001,
                                        momentum=0.9,
                                        nesterov=True)
    Ada = Adagrad(learning_rate=0.001, epsilon=1e-6)
    Adad = Adadelta(rho=0.9, epsilon=1e-6)
    RMS = RMSProp(learning_rate=0.01)
    Adam_opt = Adam(learning_rate=0.001,
                    beta_1=0.9,
                    beta_2=0.999,
                    epsilon=1e-6)
    Adamax_opt = Adam(learning_rate=0.001,
                      beta_1=0.9,
                      beta_2=0.999,
                      epsilon=1e-6)
    NAdam_opt = Adam(learning_rate=0.001,
                     beta_1=0.9,
                     beta_2=0.999,
                     epsilon=1e-6)
    NAdam_opt = Adam(learning_rate=0.001,
                     beta_1=0.9,
                     beta_2=0.999,
                     epsilon=1e-6)

    model = Neural_Networks(optimizer=Adam_opt,
                            loss=SquareLoss,
                            validation_data=validation_data)
    model.add(Dense(200, input_shape=(n_features, )))
    model.add(Activation('sigmoid'))
    model.add(Dense(100))
    model.add(Activation('tanh'))
    model.add(Dense(100))
    model.add(Activation('sigmoid'))
    model.add(Dense(2))
    model.add(Activation('linear'))

    train_err, val_err = model.fit(X_train,
                                   y_train,
                                   n_epochs=500,
                                   batch_size=8)
    print(len(train_err))
    print(len(val_err))

    print("Training and validate errors", train_err[-1], val_err[-1])
    SGD_err = np.concatenate(
        (np.array(train_err).reshape(-1, 1), np.array(val_err).reshape(-1, 1)),
        axis=1)
    np.savetxt("Adam_err.txt", SGD_err, delimiter=',')

    y_train_pred = model.predict(X_train)
    print("===Training results===")
    print("R-square on y1", R_square(y_train_pred[0], y_train[0]))
    print("R-square on y2", R_square(y_train_pred[1], y_train[1]))
    print("Overal error on traning set",(mean_squared_error(y_train_pred[0], y_train[0]) + \
     mean_squared_error(y_train_pred[1], y_test[1]))/2)
    y_val_pred = model.predict(X_val)
    print("===Validation results===")
    print("R-square on y1", R_square(y_val_pred[0], y_val[0]))
    print("R-square on y2", R_square(y_val_pred[1], y_val[1]))
    print("Overal error on valiation set",(mean_squared_error(y_val_pred[0], y_val[0]) + \
     mean_squared_error(y_val_pred[1], y_val[1]))/2)

    y_pred = model.predict(X_test)
    print("===Testing results===")
    print("The portions of training is %0.2f , validation is %0.2f and testing data is %0.2f"\
     %(len(y_train)/len(y)*100, len(y_val)/len(y)*100, len(y_test)/len(y)*100))
    print("Result on blind test samples")
    print("R2 value on the y1", R_square(y_pred[0], y_test[0]))
    print("R2 value on the y2", R_square(y_pred[1], y_test[1]))
    print("Overal blind test error", (mean_squared_error(y_pred[0], y_test[0]) + \
     mean_squared_error(y_pred[1], y_test[1]))/2 )
Exemple #7
0
def main():
    #load data
    # X = np.loadtxt("data/input.txt")
    # y = np.loadtxt("data/output.txt")
    data = get_data("data.csv")
    X, y = preprocessing(data)
    n_samples, n_features = X.shape

    X = min_max_scaler(X)
    y = min_max_scaler(y)

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        0.1,
                                                        shuffle=True,
                                                        seed=1000)
    X_train, X_val, y_train, y_val = train_test_split(X_train,
                                                      y_train,
                                                      0.1,
                                                      shuffle=True,
                                                      seed=1000)
    validation_data = (X_val, y_val)

    GD = GradientDescent(0.001)
    SGD = StochasticGradientDescent(learning_rate=0.001,
                                    momentum=0.9,
                                    nesterov=True)
    Ada = Adagrad(learning_rate=0.001, epsilon=1e-6)
    Adad = Adadelta(rho=0.9, epsilon=1e-6)
    RMS = RMSProp(learning_rate=0.01)
    Adam_opt = Adam(learning_rate=0.001,
                    beta_1=0.9,
                    beta_2=0.999,
                    epsilon=1e-6)
    Adamax_opt = Adam(learning_rate=0.001,
                      beta_1=0.9,
                      beta_2=0.999,
                      epsilon=1e-6)
    NAdam_opt = Adam(learning_rate=0.001,
                     beta_1=0.9,
                     beta_2=0.999,
                     epsilon=1e-6)
    NAdam_opt = Adam(learning_rate=0.001,
                     beta_1=0.9,
                     beta_2=0.999,
                     epsilon=1e-6)

    model = Neural_Networks(optimizer=Adam_opt,
                            loss=SquareLoss,
                            validation_data=validation_data)
    model.add(Dense(200, input_shape=(n_features, )))
    model.add(Activation('sigmoid'))
    model.add(Dense(100))
    model.add(Activation('sigmoid'))
    model.add(Dense(2))
    model.add(Activation('linear'))

    train_err, val_err = model.fit(X_train,
                                   y_train,
                                   n_epochs=1000,
                                   batch_size=256)

    y_train_pred = model.predict(X_train)
    print("===Training results===")
    print("R-square on y1", R_square(y_train_pred[0], y_train[0]))
    print("Overal error on traning set",
          (mean_squared_error(y_train_pred[0], y_train[0])) / 2)
    y_val_pred = model.predict(X_val)
    print("===Validation results===")
    print("R-square on y1", R_square(y_val_pred[0], y_val[0]))
    print("Overal error on valiation set",
          (mean_squared_error(y_val_pred[0], y_val[0])) / 2)

    y_pred = model.predict(X_test)
    print("===Testing results===")
    print("The portions of training is %0.2f , validation is %0.2f and testing data is %0.2f"\
     %(len(y_train)/len(y)*100, len(y_val)/len(y)*100, len(y_test)/len(y)*100))
    print("Result on blind test samples")
    print("R2 value on the y1", R_square(y_pred[0], y_test[0]))
    print("Overal blind test error",
          (mean_squared_error(y_pred[0], y_test[0])) / 2)

    plt.plot(train_err, 'r', label="training")
    plt.plot(val_err, 'b', label='validation')
    plt.xlabel("Iterations")
    plt.ylabel("Error")
    plt.legend()
    plt.show()

    plt.plot(np.arange(len(y_pred)), y_pred[:, 0], 'r', label='y1 predict')
    plt.plot(np.arange(len(y_pred)), y_test[:, 0], 'b', label='y1 actual')
    # plt.plot(np.arange(len(y_pred)), y_pred[:,1], 'g', label = 'y2 predict')
    # plt.plot(np.arange(len(y_pred)), y_test[:,1], 'k', label = 'y2 actual')
    plt.title("Result of blind test")
    plt.legend()
    plt.show()

    plt.plot(np.arange(len(y_train_pred)),
             y_train_pred[:, 0],
             'r',
             label='y1 training predict')
    plt.plot(np.arange(len(y_train)),
             y_train[:, 0],
             'b',
             label='y1 training actual')
    # plt.plot(np.arange(len(y_train)), y_train_pred[:,1], 'g', label = 'y2 training predict')
    # plt.plot(np.arange(len(y_train)), y_train[:,1], 'k', label = 'y2 training actual')
    plt.title("Result of traing set")
    plt.legend()
    plt.show()

    plt.plot(np.arange(len(y_val)),
             y_val_pred[:, 0],
             'r',
             label='y1 val predict')
    plt.plot(np.arange(len(y_val)), y_val[:, 0], 'b', label='y1 val actual')
    # plt.plot(np.arange(len(y_val)), y_val_pred[:,1], 'g', label = 'y2 val predict')
    # plt.plot(np.arange(len(y_val)), y_val[:,1], 'k', label = 'y2  val actual')
    plt.title("Result of validation set")
    plt.legend()
    plt.show()