Exemple #1
0
    def load(self, dir_path):
        # load options from the json file
        self.options = opts.load(dir_path)

        # load vocabularies for each field
        fields.load_vocabs(dir_path, self.fields_tuples)

        # set the current gpu
        self.options.gpu_id = self.gpu_id

        # load model, optimizer and scheduler
        self.model = models.load(dir_path, self.fields_tuples, self.gpu_id)
        self.optimizer = optimizer.load(dir_path, self.model.parameters())
        self.scheduler = scheduler.load(dir_path, self.optimizer)

        # now we have a loaded tagger
        self._loaded = True
Exemple #2
0
    def detect(self, text=None, test_path=None):

        self.options.text = text
        self.options.test_path = test_path

        words_field = fields.WordsField()
        tags_field = fields.TagsField()
        fields_tuples = [('words', words_field), ('tags', tags_field)]

        dataset_iter = None
        save_dir_path = None

        if self.options.test_path is None and self.options.text is None:
            raise Exception('You should inform a path to test data or a text.')

        if self.options.test_path is not None and self.options.text is not None:
            raise Exception(
                'You cant inform both a path to test data and a text.')

        if self.options.test_path is not None and self.options.text is None:
            logger.info('Building test dataset: {}'.format(
                self.options.test_path))
            test_tuples = list(filter(lambda x: x[0] != 'tags', fields_tuples))
            test_dataset = dataset.build(self.options.test_path, test_tuples,
                                         self.options)

            logger.info('Building test iterator...')
            dataset_iter = iterator.build(test_dataset,
                                          self.options.gpu_id,
                                          self.options.dev_batch_size,
                                          is_train=False)
            save_dir_path = self.options.test_path

        if self.options.text is not None and self.options.test_path is None:
            logger.info('Preparing text...')
            test_tuples = list(filter(lambda x: x[0] != 'tags', fields_tuples))
            test_dataset = dataset.build_texts(self.options.text, test_tuples,
                                               self.options)

            logger.info('Building iterator...')
            dataset_iter = iterator.build(test_dataset,
                                          self.options.gpu_id,
                                          self.options.dev_batch_size,
                                          is_train=False)
            save_dir_path = None

        logger.info('Loading vocabularies...')
        fields.load_vocabs(self.options.load, fields_tuples)

        logger.info('Loading model...')
        model = models.load(self.options.load, fields_tuples,
                            self.options.gpu_id)

        logger.info('Predicting...')
        predicter = Predicter(dataset_iter, model)
        predictions = predicter.predict(self.options.prediction_type)

        logger.info('Preparing to save...')
        if self.options.prediction_type == 'classes':
            prediction_tags = transform_classes_to_tags(
                tags_field, predictions)
            predictions_str = transform_predictions_to_text(prediction_tags)
        else:
            predictions_str = transform_predictions_to_text(predictions)
        words_labels = None
        if self.options.text is not None:
            orig_words = self.options.text.split()
            labels = predictions_str.split()
            print(orig_words, labels)
            words_labels = join_words_and_labels(orig_words, labels)

        return predictions, predictions_str, words_labels
Exemple #3
0
def run(options):
    words_field = fields.WordsField()
    tags_field = fields.TagsField()
    fields_tuples = [('words', words_field), ('tags', tags_field)]

    # fields_tuples += features.load(options.load)

    if options.test_path is None and options.text is None:
        raise Exception('You should inform a path to test data or a text.')

    if options.test_path is not None and options.text is not None:
        raise Exception('You cant inform both a path to test data and a text.')

    dataset_iter = None
    save_dir_path = None

    if options.test_path is not None and options.text is None:
        logger.info('Building test dataset: {}'.format(options.test_path))
        test_tuples = list(filter(lambda x: x[0] != 'tags', fields_tuples))
        test_dataset = dataset.build(options.test_path, test_tuples, options)

        logger.info('Building test iterator...')
        dataset_iter = iterator.build(test_dataset,
                                      options.gpu_id,
                                      options.dev_batch_size,
                                      is_train=False)
        save_dir_path = options.test_path

    if options.text is not None and options.test_path is None:
        logger.info('Preparing text...')
        test_tuples = list(filter(lambda x: x[0] != 'tags', fields_tuples))
        test_dataset = dataset.build_texts(options.text, test_tuples, options)

        logger.info('Building iterator...')
        dataset_iter = iterator.build(test_dataset,
                                      options.gpu_id,
                                      options.dev_batch_size,
                                      is_train=False)

        save_dir_path = None

    logger.info('Loading vocabularies...')
    fields.load_vocabs(options.load, fields_tuples)

    logger.info('Loading model...')
    model = models.load(options.load, fields_tuples, options.gpu_id)

    logger.info('Predicting...')
    predicter = Predicter(dataset_iter, model)
    predictions = predicter.predict(options.prediction_type)

    logger.info('Preparing to save...')
    if options.prediction_type == 'classes':
        prediction_tags = transform_classes_to_tags(tags_field, predictions)
        predictions_str = transform_predictions_to_text(prediction_tags)
    else:
        predictions_str = transform_predictions_to_text(predictions)

    if options.test_path is not None:
        save_predictions(
            options.output_dir,
            predictions_str,
            save_dir_path=save_dir_path,
        )
    else:
        logger.info(options.text)
        logger.info(predictions_str)

    return predictions
Exemple #4
0
def run(options):
    logger.info('Running with options: {}'.format(options))

    words_field = fields.WordsField()
    tags_field = fields.TagsField()
    fields_tuples = [('words', words_field), ('tags', tags_field)]

    logger.info('Building train corpus: {}'.format(options.train_path))
    train_dataset = dataset.build(options.train_path, fields_tuples, options)

    logger.info('Building train iterator...')
    train_iter = iterator.build(train_dataset,
                                options.gpu_id,
                                options.train_batch_size,
                                is_train=True)

    dev_dataset = None
    dev_iter = None
    if options.dev_path is not None:
        logger.info('Building dev dataset: {}'.format(options.dev_path))
        dev_dataset = dataset.build(options.dev_path, fields_tuples, options)
        logger.info('Building dev iterator...')
        dev_iter = iterator.build(dev_dataset,
                                  options.gpu_id,
                                  options.dev_batch_size,
                                  is_train=False)

    test_dataset = None
    test_iter = None
    if options.test_path is not None:
        logger.info('Building test dataset: {}'.format(options.test_path))
        test_dataset = dataset.build(options.test_path, fields_tuples, options)
        logger.info('Building test iterator...')
        test_iter = iterator.build(test_dataset,
                                   options.gpu_id,
                                   options.dev_batch_size,
                                   is_train=False)

    datasets = [train_dataset, dev_dataset, test_dataset]
    datasets = list(filter(lambda x: x is not None, datasets))

    # BUILD
    if not options.load:
        logger.info('Building vocabulary...')
        fields.build_vocabs(fields_tuples, train_dataset, datasets, options)
        loss_weights = None
        if options.loss_weights == 'balanced':
            loss_weights = train_dataset.get_loss_weights()
        logger.info('Building model...')
        model = models.build(options, fields_tuples, loss_weights)
        logger.info('Building optimizer...')
        optim = optimizer.build(options, model.parameters())
        logger.info('Building scheduler...')
        sched = scheduler.build(options, optim)

    # OR LOAD
    else:
        logger.info('Loading vocabularies...')
        fields.load_vocabs(options.load, fields_tuples)
        logger.info('Loading model...')
        model = models.load(options.load, fields_tuples, options.gpu_id)
        logger.info('Loading optimizer...')
        optim = optimizer.load(options.load, model.parameters())
        logger.info('Loading scheduler...')
        sched = scheduler.load(options.load, optim)

    # STATS
    logger.info('Word vocab size: {}'.format(len(words_field.vocab)))
    logger.info('Tag vocab size: {}'.format(len(tags_field.vocab) - 1))
    logger.info('Number of training examples: {}'.format(len(train_dataset)))
    if dev_dataset:
        logger.info('Number of dev examples: {}'.format(len(dev_dataset)))
    if test_dataset:
        logger.info('Number of test examples: {}'.format(len(test_dataset)))

    logger.info('Model info: ')
    logger.info(str(model))
    logger.info('Optimizer info: ')
    logger.info(str(optim))
    logger.info('Scheduler info: ')
    logger.info(str(sched))

    nb_trainable_params = 0
    for p_name, p_tensor in model.named_parameters():
        if p_tensor.requires_grad:
            if options.print_parameters_per_layer:
                logger.info('{} {}: {}'.format(p_name, tuple(p_tensor.size()),
                                               p_tensor.size().numel()))
            nb_trainable_params += p_tensor.size().numel()
    logger.info('Nb of trainable parameters: {}'.format(nb_trainable_params))

    # TRAIN
    logger.info('Building trainer...')
    trainer = Trainer(train_iter,
                      model,
                      optim,
                      sched,
                      options,
                      dev_iter=dev_iter,
                      test_iter=test_iter)

    if options.resume_epoch and options.load is None:
        logger.info('Resuming training...')
        trainer.resume(options.resume_epoch)

    trainer.train()

    # SAVE
    if options.save:
        logger.info('Saving path: {}'.format(options.save))
        config_path = Path(options.save)
        config_path.mkdir(parents=True, exist_ok=True)
        logger.info('Saving config options...')
        opts.save(config_path, options)
        logger.info('Saving vocabularies...')
        fields.save_vocabs(config_path, fields_tuples)
        logger.info('Saving model...')
        models.save(config_path, model)
        logger.info('Saving optimizer...')
        optimizer.save(config_path, optim)
        logger.info('Saving scheduler...')
        scheduler.save(config_path, sched)

    return fields_tuples, model, optim, sched