Exemple #1
0
    def test_process_whole_image(self, data_format, shape):
        keras.backend.set_image_data_format(data_format)

        num_crops = 2
        receptive_field = 3
        features = 3

        images = np.ones(shape)

        input_shape = running.get_cropped_input_shape(
            images, num_crops,
            receptive_field=receptive_field,
            data_format=data_format)

        for padding in ['reflect', 'zero']:
            with self.test_session():
                inputs = keras.layers.Input(shape=input_shape)
                outputs = layers.TensorProduct(features)(inputs)
                model = keras.models.Model(inputs=inputs,
                                           outputs=[outputs, outputs])

                output = running.process_whole_image(
                    model, images,
                    num_crops=num_crops,
                    receptive_field=receptive_field,
                    padding=padding)

                if data_format == 'channels_first':
                    expected_shape = tuple([images.shape[0], features] +
                                           list(images.shape[2:]))
                else:
                    expected_shape = tuple([images.shape[0]] +
                                           list(images.shape[1:-1]) +
                                           [features])

                self.assertEqual(output.shape, expected_shape)

        with self.assertRaises(ValueError):
            inputs = keras.layers.Input(shape=(3, 4, 5))
            outputs = layers.TensorProduct(features)(inputs)
            model = keras.models.Model(inputs=inputs, outputs=outputs)

            output = running.process_whole_image(
                model, images,
                num_crops=num_crops,
                receptive_field=receptive_field,
                padding='reflect')

        with self.assertRaises(ValueError):
            inputs = keras.layers.Input(shape=input_shape)
            outputs = layers.TensorProduct(features)(inputs)
            model = keras.models.Model(inputs=inputs, outputs=outputs)

            output = running.process_whole_image(
                model, images,
                num_crops=num_crops,
                receptive_field=receptive_field,
                padding=None)
Exemple #2
0
 def test_tensorproduct_constraints(self):
     k_constraint = tf.keras.constraints.max_norm(0.01)
     b_constraint = tf.keras.constraints.max_norm(0.01)
     layer = layers.TensorProduct(3,
                                  kernel_constraint=k_constraint,
                                  bias_constraint=b_constraint)
     layer(tf.keras.backend.variable(np.ones((2, 4))))
     self.assertEqual(layer.kernel.constraint, k_constraint)
     self.assertEqual(layer.bias.constraint, b_constraint)
Exemple #3
0
 def test_tensorproduct_regularization(self):
     layer = layers.TensorProduct(
         3,
         kernel_regularizer=tf.keras.regularizers.l1(0.01),
         bias_regularizer='l1',
         activity_regularizer='l2',
         name='tensorproduct_reg')
     layer(tf.keras.backend.variable(np.ones((2, 4))))
     self.assertEqual(3, len(layer.losses))