Exemple #1
0
    def test_conv_2d(self):
        """Test invoking Conv2D in eager mode."""
        with context.eager_mode():
            with tfe.IsolateTest():
                length = 4
                width = 5
                in_channels = 2
                filters = 3
                kernel_size = 2
                batch_size = 10
                input = np.random.rand(batch_size, length, width,
                                       in_channels).astype(np.float32)
                layer = layers.Conv2D(filters, kernel_size=kernel_size)
                result = layer(input)
                assert result.shape == (batch_size, length, width, filters)
                assert len(layer.variables) == 2

                # Creating a second layer should produce different results, since it has
                # different random weights.

                layer2 = layers.Conv2D(filters, kernel_size=kernel_size)
                result2 = layer2(input)
                assert not np.allclose(result, result2)

                # But evaluating the first layer again should produce the same result as before.

                result3 = layer(input)
                assert np.allclose(result, result3)
 def __init__(self,
              seq_length,
              use_RNN=False,
              num_tasks=1,
              num_filters=15,
              kernel_size=15,
              pool_width=35,
              L1=0,
              dropout=0.0,
              verbose=True,
              **kwargs):
     super(SequenceDNN, self).__init__(**kwargs)
     self.num_tasks = num_tasks
     self.verbose = verbose
     self.add(layers.Conv2D(num_filters, kernel_size=kernel_size))
     self.add(layers.Dropout(dropout))
     self.add(layers.Flatten())
     self.add(layers.Dense(self.num_tasks, activation_fn=tf.nn.relu))
Exemple #3
0
            files.append(os.path.join(image_dir, fname))
            labels.append(os.path.join(label_dir, f))
loader = dc.data.ImageLoader()
dataset = loader.featurize(files, labels)
splitter = dc.splits.RandomSplitter()
train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
    dataset, seed=123)

# Create the model.
learning_rate = dc.models.optimizers.ExponentialDecay(0.01, 0.9, 250)
model = dc.models.TensorGraph(learning_rate=learning_rate,
                              model_dir='models/segmentation')
features = layers.Feature(shape=(None, 520, 696, 1)) / 255.0
labels = layers.Label(shape=(None, 520, 696, 1)) / 255.0
# Downsample three times.
conv1 = layers.Conv2D(16, kernel_size=5, stride=2, in_layers=features)
conv2 = layers.Conv2D(32, kernel_size=5, stride=2, in_layers=conv1)
conv3 = layers.Conv2D(64, kernel_size=5, stride=2, in_layers=conv2)
# Do a 1x1 convolution.
conv4 = layers.Conv2D(64, kernel_size=1, stride=1, in_layers=conv3)
# Upsample three times.
concat1 = layers.Concat(in_layers=[conv3, conv4], axis=3)
deconv1 = layers.Conv2DTranspose(32,
                                 kernel_size=5,
                                 stride=2,
                                 in_layers=concat1)
concat2 = layers.Concat(in_layers=[conv2, deconv1], axis=3)
deconv2 = layers.Conv2DTranspose(16,
                                 kernel_size=5,
                                 stride=2,
                                 in_layers=concat2)
# Transfor dataset into format readable by deepchem
train_dataset = dc.data.NumpyDataset(mnist.train.images, mnist.train.labels)
test_dataset = dc.data.NumpyDataset(mnist.test.images, mnist.test.labels)

model = dc.models.TensorGraph(model_dir='mnist')

# Images in MNIST are 28x28, flattened 784
# None means that the input can be of any dimension - we can use it as variable batch size
feature = layers.Feature(shape=(None, 784))
# 0..9 digits
label = layers.Label(shape=(None, 10))
# Reshape flattened layer to matrix to use it with convolution
make_image = layers.Reshape(shape=(None, 28, 28), in_layers=feature)

conv2d_1 = layers.Conv2D(num_outputs=32,
                         activation_fn=tf.nn.relu,
                         in_layers=make_image)
conv2d_2 = layers.Conv2D(num_outputs=64,
                         activation_fn=tf.nn.relu,
                         in_layers=conv2d_1)

flatten = layers.Flatten(in_layers=conv2d_2)
dense1 = layers.Dense(out_channels=1024,
                      activation_fn=tf.nn.relu,
                      in_layers=flatten)
dense2 = layers.Dense(out_channels=10, activation_fn=None, in_layers=dense1)

# Computes the loss for every sample
smce = layers.SoftMaxCrossEntropy(in_layers=[label, dense2])
# Average all the losses
loss = layers.ReduceMean(in_layers=smce)
  if f.endswith('.TIF'):
    files.append(os.path.join(image_dir, f))
    labels.append(int(re.findall('_C(.*?)_', f)[0]))
loader = dc.data.ImageLoader()
dataset = loader.featurize(files, np.array(labels))
splitter = dc.splits.RandomSplitter()
train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(dataset, seed=123)

# Create the model.
learning_rate = dc.models.tensorgraph.optimizers.ExponentialDecay(0.001, 0.9, 250)
model = dc.models.TensorGraph(learning_rate=learning_rate, model_dir='models/model')
features = layers.Feature(shape=(None, 520, 696))
labels = layers.Label(shape=(None,))
prev_layer = features
for num_outputs in [16, 32, 64, 128, 256]:
  prev_layer = layers.Conv2D(num_outputs, kernel_size=5, stride=2, in_layers=prev_layer)
output = layers.Dense(1, in_layers=layers.Flatten(prev_layer))
model.add_output(output)
loss = layers.ReduceSum(layers.L2Loss(in_layers=(output, labels)))
model.set_loss(loss)

if not os.path.exists('./models'):
  os.mkdir('models')
if not os.path.exists('./models/model'):
  os.mkdir('models/model')

if not RETRAIN:
  model.restore()

# Train it and evaluate performance on the test set.
if RETRAIN:
def create_model():
    """
    Create our own MNIST model from scratch
    :return:
    :rtype:
    """
    mnist = input_data.read_data_sets("MNIST_DATA/", one_hot=True)

    # the layers from deepchem are the building blocks of what we will use to make our deep learning architecture

    # now we wrap our dataset into a NumpyDataset

    train_dataset = dc.data.NumpyDataset(mnist.train.images,
                                         mnist.train.labels)
    test_dataset = dc.data.NumpyDataset(mnist.test.images, mnist.test.labels)

    # we will create a model that will take an input, add multiple layers, where each layer takes input from the
    # previous layers.

    model = dc.models.TensorGraph(model_dir='mnist')

    # 784 corresponds to an image of size 28 X 28
    # 10 corresponds to the fact that there are 10 possible digits (0-9)
    # the None indicates that we can accept any size input (e.g. an empty array or 500 items each with 784 features)
    # our data is also categorical so we must one hot encode, set single array element to 1 and the rest to 0
    feature = layers.Feature(shape=(None, 784))
    labels = layers.Label(shape=(None, 10))

    # in order to apply convolutional layers to our input, we convert flat vector of 785 to 28X28
    # in_layers means it takes our feature layer as an input
    make_image = layers.Reshape(shape=(None, 28, 28), in_layers=feature)

    # now that we have reshaped the input, we pass to convolution layers

    conv2d_1 = layers.Conv2D(num_outputs=32,
                             activation_fn=tf.nn.relu,
                             in_layers=make_image)

    conv2d_2 = layers.Conv2D(num_outputs=64,
                             activation_fn=tf.nn.relu,
                             in_layers=conv2d_1)

    # we want to end by applying fully connected (Dense) layers to the outputs of our convolutional layer
    # but first, we must flatten the layer from a 2d matrix to a 1d vector

    flatten = layers.Flatten(in_layers=conv2d_2)
    dense1 = layers.Dense(out_channels=1024,
                          activation_fn=tf.nn.relu,
                          in_layers=flatten)

    # note that this is final layer so out_channels of 10 represents the 10 outputs and no activation_fn
    dense2 = layers.Dense(out_channels=10,
                          activation_fn=None,
                          in_layers=dense1)

    # next we want to connect this output to a loss function, so we can train the output

    # compute the value of loss function for every sample then average of all samples to get final loss (ReduceMean)
    smce = layers.SoftMaxCrossEntropy(in_layers=[labels, dense2])
    loss = layers.ReduceMean(in_layers=smce)
    model.set_loss(loss)

    # for MNIST we want the probability that a given sample represents one of the 10 digits
    # we can achieve this using a softmax function to get the probabilities, then cross entropy to get the labels

    output = layers.SoftMax(in_layers=dense2)
    model.add_output(output)

    # if our model takes long to train, reduce nb_epoch to 1
    model.fit(train_dataset, nb_epoch=10)

    # our metric is accuracy, the fraction of labels that are accurately predicted
    metric = dc.metrics.Metric(dc.metrics.accuracy_score)

    train_scores = model.evaluate(train_dataset, [metric])
    test_scores = model.evaluate(test_dataset, [metric])

    print('train_scores', train_scores)
    print('test_scores', test_scores)