Exemple #1
0
 def test_input_fifo_queue(self):
   """Test InputFifoQueue can be invoked."""
   batch_size = 10
   n_features = 5
   in_tensor = np.random.rand(batch_size, n_features)
   tf.reset_default_graph()
   with self.test_session() as sess:
     in_tensor = TensorWrapper(
         tf.convert_to_tensor(in_tensor, dtype=tf.float32), name="input")
     InputFifoQueue([(batch_size, n_features)], ["input"])(in_tensor)
    def add_adapter(self, all_layers, task, layer_num):
        """Add an adapter connection for given task/layer combo"""
        i = layer_num
        prev_layers = []
        trainable_layers = []
        # Handle output layer
        if i < len(self.layer_sizes):
            layer_sizes = self.layer_sizes
            alpha_init_stddev = self.alpha_init_stddevs[i]
            weight_init_stddev = self.weight_init_stddevs[i]
            bias_init_const = self.bias_init_consts[i]
        elif i == len(self.layer_sizes):
            layer_sizes = self.layer_sizes + [1]
            alpha_init_stddev = self.alpha_init_stddevs[-1]
            weight_init_stddev = self.weight_init_stddevs[-1]
            bias_init_const = self.bias_init_consts[-1]
        else:
            raise ValueError("layer_num too large for add_adapter.")
        # Iterate over all previous tasks.
        for prev_task in range(task):
            prev_layers.append(all_layers[(i - 1, prev_task)])
        # prev_layers is a list with elements of size
        # (batch_size, layer_sizes[i-1])
        prev_layer = Concat(axis=1, in_layers=prev_layers)
        with self._get_tf("Graph").as_default():
            alpha = TensorWrapper(
                tf.Variable(tf.truncated_normal((1, ),
                                                stddev=alpha_init_stddev),
                            name="alpha_layer_%d_task%d" % (i, task)))
            trainable_layers.append(alpha)

        prev_layer = prev_layer * alpha
        dense1 = Dense(in_layers=[prev_layer],
                       out_channels=layer_sizes[i - 1],
                       activation_fn=None,
                       weights_initializer=TFWrapper(
                           tf.truncated_normal_initializer,
                           stddev=weight_init_stddev),
                       biases_initializer=TFWrapper(tf.constant_initializer,
                                                    value=bias_init_const))
        trainable_layers.append(dense1)

        dense2 = Dense(in_layers=[dense1],
                       out_channels=layer_sizes[i],
                       activation_fn=None,
                       weights_initializer=TFWrapper(
                           tf.truncated_normal_initializer,
                           stddev=weight_init_stddev),
                       biases_initializer=None)
        trainable_layers.append(dense2)

        return dense2, trainable_layers
Exemple #3
0
    def build_graph(self):
        print("building")
        features = Feature(shape=(None, self.n_features))
        last_layer = features
        for layer_size in self.encoder_layers:
            last_layer = Dense(in_layers=last_layer,
                               activation_fn=tf.nn.elu,
                               out_channels=layer_size)

        self.mean = Dense(in_layers=last_layer,
                          activation_fn=None,
                          out_channels=1)
        self.std = Dense(in_layers=last_layer,
                         activation_fn=None,
                         out_channels=1)

        readout = CombineMeanStd([self.mean, self.std], training_only=True)
        last_layer = readout
        for layer_size in self.decoder_layers:
            last_layer = Dense(in_layers=readout,
                               activation_fn=tf.nn.elu,
                               out_channels=layer_size)

        self.reconstruction = Dense(in_layers=last_layer,
                                    activation_fn=None,
                                    out_channels=self.n_features)
        weights = Weights(shape=(None, self.n_features))
        reproduction_loss = L2Loss(
            in_layers=[features, self.reconstruction, weights])
        reproduction_loss = ReduceSum(in_layers=reproduction_loss, axis=0)
        global_step = TensorWrapper(self._get_tf("GlobalStep"))
        kl_loss = KLDivergenceLoss(
            in_layers=[self.mean, self.std, global_step],
            annealing_start_step=self.kl_annealing_start_step,
            annealing_stop_step=self.kl_annealing_stop_step)
        loss = Add(in_layers=[kl_loss, reproduction_loss], weights=[0.5, 1])

        self.add_output(self.mean)
        self.add_output(self.reconstruction)
        self.set_loss(loss)