Exemple #1
0
 def test_weighted_error(self):
   """Test that WeightedError can be invoked."""
   batch_size = 10
   n_features = 5
   guess_tensor = np.random.rand(batch_size, n_features)
   label_tensor = np.random.rand(batch_size, n_features)
   with self.session() as sess:
     guess_tensor = tf.convert_to_tensor(guess_tensor, dtype=tf.float32)
     label_tensor = tf.convert_to_tensor(label_tensor, dtype=tf.float32)
     out_tensor = WeightedError()(guess_tensor, label_tensor)
     out_tensor = out_tensor.eval()
     assert isinstance(out_tensor, np.float32)
Exemple #2
0
 def test_weighted_error(self):
     """Test that WeightedError can be invoked."""
     batch_size = 10
     n_features = 5
     guess_tensor = np.random.rand(batch_size, n_features)
     label_tensor = np.random.rand(batch_size, n_features)
     with self.session() as sess:
         guess_tensor = tf.convert_to_tensor(guess_tensor, dtype=tf.float32)
         label_tensor = tf.convert_to_tensor(label_tensor, dtype=tf.float32)
         out_tensor = WeightedError()(guess_tensor, label_tensor)
         out_tensor = out_tensor.eval()
         assert isinstance(out_tensor, np.float32)
    def build_graph(self):
        # Layer 1
        gc1_input = [self.atom_features, self.indexing, self.membership] + self.deg_adj_list
        gc1 = GraphConv(64, activation_fn=tf.nn.relu, in_layers=gc1_input)
        bn1 = BatchNorm(in_layers=[gc1])
        gp1_input = [bn1, self.indexing, self.membership] + self.deg_adj_list
        gp1 = GraphPool(in_layers=gp1_input)

        # Layer 2
        gc2_input = [gp1, self.indexing, self.membership] + self.deg_adj_list
        gc2 = GraphConv(64, activation_fn=tf.nn.relu, in_layers=gc2_input)
        bn2 = BatchNorm(in_layers=[gc2])
        gp2_input = [bn2, self.indexing, self.membership] + self.deg_adj_list
        gp2 = GraphPool(in_layers=gp2_input)

        # Dense layer 1
        d1 = Dense(out_channels=128, activation_fn=tf.nn.relu, in_layers=[gp2])
        bn3 = BatchNorm(in_layers=[d1])

        # Graph gather layer
        gg1_input = [bn3, self.indexing, self.membership] + self.deg_adj_list
        gg1 = GraphGather(batch_size=self.batch_size, activation=tf.nn.tanh, in_layers=gg1_input)

        # Output dense layer
        d2 = Dense(out_channels=2, activation_fn=None, in_layers=[gg1])
        softmax = SoftMax(in_layers=[d2])
        self.tg.add_output(softmax)

        # Set loss function
        self.label = Label(shape=(None, 2))
        cost = SoftMaxCrossEntropy(in_layers=[self.label, d2])
        self.weight = Weights(shape=(None, 1))
        loss = WeightedError(in_layers=[cost, self.weight])
        self.tg.set_loss(loss)
    def _build_graph(self):
        self.atom_flags = Feature(shape=(None,
                                         self.max_atoms * self.max_atoms))
        self.atom_feats = Feature(shape=(None, self.max_atoms * self.n_feat))

        reshaped_atom_feats = Reshape(in_layers=[self.atom_feats],
                                      shape=(-1, self.max_atoms, self.n_feat))
        reshaped_atom_flags = Reshape(in_layers=[self.atom_flags],
                                      shape=(-1, self.max_atoms,
                                             self.max_atoms))

        previous_layer = reshaped_atom_feats

        Hiddens = []
        for n_hidden in self.layer_structures:
            Hidden = Dense(out_channels=n_hidden,
                           activation_fn=tf.nn.tanh,
                           in_layers=[previous_layer])
            Hiddens.append(Hidden)
            previous_layer = Hiddens[-1]

        regression = Dense(out_channels=1 * self.n_tasks,
                           activation_fn=None,
                           in_layers=[Hiddens[-1]])
        output = BPGather(self.max_atoms,
                          in_layers=[regression, reshaped_atom_flags])
        self.add_output(output)

        label = Label(shape=(None, self.n_tasks, 1))
        loss = ReduceSum(L2Loss(in_layers=[label, output]))
        weights = Weights(shape=(None, self.n_tasks))

        weighted_loss = WeightedError(in_layers=[loss, weights])
        self.set_loss(weighted_loss)
Exemple #5
0
  def build_graph(self):
    """
    Building graph structures:
    """
    self.m1_features = Feature(shape=(None, self.n_features))
    self.m2_features = Feature(shape=(None, self.n_features))
    prev_layer1 = self.m1_features
    prev_layer2 = self.m2_features
    for layer_size in self.layer_sizes:
      prev_layer1 = Dense(
          out_channels=layer_size,
          in_layers=[prev_layer1],
          activation_fn=tf.nn.relu)
      prev_layer2 = prev_layer1.shared([prev_layer2])
      if self.dropout > 0.0:
        prev_layer1 = Dropout(self.dropout, in_layers=prev_layer1)
        prev_layer2 = Dropout(self.dropout, in_layers=prev_layer2)

    readout_m1 = Dense(
        out_channels=1, in_layers=[prev_layer1], activation_fn=None)
    readout_m2 = readout_m1.shared([prev_layer2])
    self.add_output(Sigmoid(readout_m1) * 4 + 1)
    self.add_output(Sigmoid(readout_m2) * 4 + 1)

    self.difference = readout_m1 - readout_m2
    label = Label(shape=(None, 1))
    loss = HingeLoss(in_layers=[label, self.difference])
    self.my_task_weights = Weights(shape=(None, 1))
    loss = WeightedError(in_layers=[loss, self.my_task_weights])
    self.set_loss(loss)
Exemple #6
0
    def _build_graph(self):

        self.one_hot_seq = Feature(shape=(None, self.pad_length,
                                          self.num_amino_acids),
                                   dtype=tf.float32)

        conv1 = Conv1D(kernel_size=2,
                       filters=512,
                       in_layers=[self.one_hot_seq])

        maxpool1 = MaxPool1D(strides=2, padding="VALID", in_layers=[conv1])
        conv2 = Conv1D(kernel_size=3, filters=512, in_layers=[maxpool1])
        flattened = Flatten(in_layers=[conv2])
        dense1 = Dense(out_channels=400,
                       in_layers=[flattened],
                       activation_fn=tf.nn.tanh)
        dropout = Dropout(dropout_prob=self.dropout_p, in_layers=[dense1])
        output = Dense(out_channels=1, in_layers=[dropout], activation_fn=None)
        self.add_output(output)

        if self.mode == "regression":
            label = Label(shape=(None, 1))
            loss = L2Loss(in_layers=[label, output])
        else:
            raise NotImplementedError(
                "Classification support not added yet. Missing details in paper."
            )
        weights = Weights(shape=(None, ))
        weighted_loss = WeightedError(in_layers=[loss, weights])
        self.set_loss(weighted_loss)
  def build_graph(self):
    self.atom_flags = Feature(shape=(None, self.max_atoms, self.max_atoms))
    self.atom_feats = Feature(shape=(None, self.max_atoms, self.n_feat))
    previous_layer = self.atom_feats

    Hiddens = []
    for n_hidden in self.layer_structures:
      Hidden = Dense(
          out_channels=n_hidden,
          activation_fn=tf.nn.tanh,
          in_layers=[previous_layer])
      Hiddens.append(Hidden)
      previous_layer = Hiddens[-1]

    costs = []
    self.labels_fd = []
    for task in range(self.n_tasks):
      regression = Dense(
          out_channels=1, activation_fn=None, in_layers=[Hiddens[-1]])
      output = BPGather(self.max_atoms, in_layers=[regression, self.atom_flags])
      self.add_output(output)

      label = Label(shape=(None, 1))
      self.labels_fd.append(label)
      cost = L2Loss(in_layers=[label, output])
      costs.append(cost)

    all_cost = Stack(in_layers=costs, axis=1)
    self.weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[all_cost, self.weights])
    self.set_loss(loss)
Exemple #8
0
    def build_graph(self):
        """Constructs the graph architecture of IRV as described in:

       https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750043/
    """
        self.mol_features = Feature(shape=(None, self.n_features))
        self._labels = Label(shape=(None, self.n_tasks))
        self._weights = Weights(shape=(None, self.n_tasks))
        predictions = IRVLayer(self.n_tasks,
                               self.K,
                               in_layers=[self.mol_features])
        costs = []
        outputs = []
        for task in range(self.n_tasks):
            task_output = Slice(task, 1, in_layers=[predictions])
            sigmoid = Sigmoid(in_layers=[task_output])
            outputs.append(sigmoid)

            label = Slice(task, axis=1, in_layers=[self._labels])
            cost = SigmoidCrossEntropy(in_layers=[label, task_output])
            costs.append(cost)
        all_cost = Concat(in_layers=costs, axis=1)
        loss = WeightedError(in_layers=[all_cost, self._weights]) + \
            IRVRegularize(predictions, self.penalty, in_layers=[predictions])
        self.set_loss(loss)
        outputs = Stack(axis=1, in_layers=outputs)
        outputs = Concat(axis=2, in_layers=[1 - outputs, outputs])
        self.add_output(outputs)
    def build_graph(self):
        # Build placeholders
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.pair_features = Feature(shape=(None, self.n_pair_feat))
        self.atom_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32)

        message_passing = MessagePassing(self.T,
                                         message_fn='enn',
                                         update_fn='gru',
                                         n_hidden=self.n_hidden,
                                         in_layers=[
                                             self.atom_features,
                                             self.pair_features,
                                             self.atom_to_pair
                                         ])

        atom_embeddings = Dense(self.n_hidden, in_layers=[message_passing])

        mol_embeddings = SetGather(
            self.M,
            self.batch_size,
            n_hidden=self.n_hidden,
            in_layers=[atom_embeddings, self.atom_split])

        dense1 = Dense(out_channels=2 * self.n_hidden,
                       activation_fn=tf.nn.relu,
                       in_layers=[mol_embeddings])
        costs = []
        self.labels_fd = []
        for task in range(self.n_tasks):
            if self.mode == "classification":
                classification = Dense(out_channels=2,
                                       activation_fn=None,
                                       in_layers=[dense1])
                softmax = SoftMax(in_layers=[classification])
                self.add_output(softmax)

                label = Label(shape=(None, 2))
                self.labels_fd.append(label)
                cost = SoftMaxCrossEntropy(in_layers=[label, classification])
                costs.append(cost)
            if self.mode == "regression":
                regression = Dense(out_channels=1,
                                   activation_fn=None,
                                   in_layers=[dense1])
                self.add_output(regression)

                label = Label(shape=(None, 1))
                self.labels_fd.append(label)
                cost = L2Loss(in_layers=[label, regression])
                costs.append(cost)
        if self.mode == "classification":
            all_cost = Concat(in_layers=costs, axis=1)
        elif self.mode == "regression":
            all_cost = Stack(in_layers=costs, axis=1)
        self.weights = Weights(shape=(None, self.n_tasks))
        loss = WeightedError(in_layers=[all_cost, self.weights])
        self.set_loss(loss)
Exemple #10
0
  def create_loss(self, layer, label, weight):
    task_label = Squeeze(squeeze_dims=1, in_layers=[label])
    task_label = Cast(dtype=tf.int32, in_layers=[task_label])
    task_weight = Squeeze(squeeze_dims=1, in_layers=[weight])

    loss = SparseSoftMaxCrossEntropy(in_layers=[task_label, layer])
    weighted_loss = WeightedError(in_layers=[loss, task_weight])
    return weighted_loss
Exemple #11
0
def test_WeightedError_pickle():
  tg = TensorGraph()
  feature = Feature(shape=(tg.batch_size, 10))
  layer = WeightedError(in_layers=[feature, feature])
  tg.add_output(layer)
  tg.set_loss(layer)
  tg.build()
  tg.save()
    def build_graph(self):
        """Building graph structures:
        Features => DAGLayer => DAGGather => Classification or Regression
        """
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.parents = Feature(shape=(None, self.max_atoms, self.max_atoms),
                               dtype=tf.int32)
        self.calculation_orders = Feature(shape=(None, self.max_atoms),
                                          dtype=tf.int32)
        self.calculation_masks = Feature(shape=(None, self.max_atoms),
                                         dtype=tf.bool)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)
        self.n_atoms = Feature(shape=(), dtype=tf.int32)
        dag_layer1 = DAGLayer(n_graph_feat=self.n_graph_feat,
                              n_atom_feat=self.n_atom_feat,
                              max_atoms=self.max_atoms,
                              batch_size=self.batch_size,
                              in_layers=[
                                  self.atom_features, self.parents,
                                  self.calculation_orders,
                                  self.calculation_masks, self.n_atoms
                              ])
        dag_gather = DAGGather(n_graph_feat=self.n_graph_feat,
                               n_outputs=self.n_outputs,
                               max_atoms=self.max_atoms,
                               in_layers=[dag_layer1, self.membership])

        costs = []
        self.labels_fd = []
        for task in range(self.n_tasks):
            if self.mode == "classification":
                classification = Dense(out_channels=2,
                                       activation_fn=None,
                                       in_layers=[dag_gather])
                softmax = SoftMax(in_layers=[classification])
                self.add_output(softmax)

                label = Label(shape=(None, 2))
                self.labels_fd.append(label)
                cost = SoftMaxCrossEntropy(in_layers=[label, classification])
                costs.append(cost)
            if self.mode == "regression":
                regression = Dense(out_channels=1,
                                   activation_fn=None,
                                   in_layers=[dag_gather])
                self.add_output(regression)

                label = Label(shape=(None, 1))
                self.labels_fd.append(label)
                cost = L2Loss(in_layers=[label, regression])
                costs.append(cost)
        if self.mode == "classification":
            all_cost = Concat(in_layers=costs, axis=1)
        elif self.mode == "regression":
            all_cost = Stack(in_layers=costs, axis=1)
        self.weights = Weights(shape=(None, self.n_tasks))
        loss = WeightedError(in_layers=[all_cost, self.weights])
        self.set_loss(loss)
Exemple #13
0
    def build_graph(self):
        self.atom_features = Feature(shape=(None, 75))
        self.degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)

        self.deg_adjs = []
        for i in range(0, 10 + 1):
            deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
            self.deg_adjs.append(deg_adj)
        in_layer = self.atom_features
        for layer_size in self.graph_conv_layers:
            gc1_in = [in_layer, self.degree_slice, self.membership
                      ] + self.deg_adjs
            gc1 = GraphConv(layer_size,
                            activation_fn=tf.nn.relu,
                            in_layers=gc1_in)
            batch_norm1 = MyBatchNorm(in_layers=[gc1])
            gp_in = [batch_norm1, self.degree_slice, self.membership
                     ] + self.deg_adjs
            in_layer = GraphPool(in_layers=gp_in)
        dense = Dense(out_channels=self.dense_layer_size[0],
                      activation_fn=tf.nn.relu,
                      in_layers=[in_layer])
        batch_norm3 = MyBatchNorm(in_layers=[dense])
        batch_norm3 = Dropout(self.dropout, in_layers=[batch_norm3])
        readout = GraphGather(
            batch_size=self.batch_size,
            activation_fn=tf.nn.tanh,
            in_layers=[batch_norm3, self.degree_slice, self.membership] +
            self.deg_adjs)

        curLayer = readout
        for myind in range(1, len(self.dense_layer_size) - 1):
            curLayer = Dense(out_channels=self.dense_layer_size[myind],
                             activation_fn=tf.nn.relu,
                             in_layers=[curLayer])
            curLayer = Dropout(self.dropout, in_layers=[curLayer])

        classification = Dense(out_channels=self.n_tasks,
                               activation_fn=None,
                               in_layers=[curLayer])
        sigmoid = MySigmoid(in_layers=[classification])
        self.add_output(sigmoid)

        self.label = Label(shape=(None, self.n_tasks))
        all_cost = MySigmoidCrossEntropy(
            in_layers=[self.label, classification])
        self.weights = Weights(shape=(None, self.n_tasks))
        loss = WeightedError(in_layers=[all_cost, self.weights])
        self.set_loss(loss)

        self.mydense = dense
        self.myreadout = readout
        self.myclassification = classification
        self.mysigmoid = sigmoid
        self.myall_cost = all_cost
        self.myloss = loss
Exemple #14
0
  def build_graph(self):
    self.smiles_seqs = Feature(shape=(None, self.seq_length), dtype=tf.int32)
    # Character embedding
    self.Embedding = DTNNEmbedding(
        n_embedding=self.n_embedding,
        periodic_table_length=len(self.char_dict.keys()) + 1,
        in_layers=[self.smiles_seqs])
    self.pooled_outputs = []
    self.conv_layers = []
    for filter_size, num_filter in zip(self.kernel_sizes, self.num_filters):
      # Multiple convolutional layers with different filter widths
      self.conv_layers.append(
          Conv1D(
              kernel_size=filter_size,
              filters=num_filter,
              padding='valid',
              in_layers=[self.Embedding]))
      # Max-over-time pooling
      self.pooled_outputs.append(
          ReduceMax(axis=1, in_layers=[self.conv_layers[-1]]))
    # Concat features from all filters(one feature per filter)
    concat_outputs = Concat(axis=1, in_layers=self.pooled_outputs)
    dropout = Dropout(dropout_prob=self.dropout, in_layers=[concat_outputs])
    dense = Dense(
        out_channels=200, activation_fn=tf.nn.relu, in_layers=[dropout])
    # Highway layer from https://arxiv.org/pdf/1505.00387.pdf
    self.gather = Highway(in_layers=[dense])

    costs = []
    self.labels_fd = []
    for task in range(self.n_tasks):
      if self.mode == "classification":
        classification = Dense(
            out_channels=2, activation_fn=None, in_layers=[self.gather])
        softmax = SoftMax(in_layers=[classification])
        self.add_output(softmax)

        label = Label(shape=(None, 2))
        self.labels_fd.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
      if self.mode == "regression":
        regression = Dense(
            out_channels=1, activation_fn=None, in_layers=[self.gather])
        self.add_output(regression)

        label = Label(shape=(None, 1))
        self.labels_fd.append(label)
        cost = L2Loss(in_layers=[label, regression])
        costs.append(cost)
    if self.mode == "classification":
      all_cost = Stack(in_layers=costs, axis=1)
    elif self.mode == "regression":
      all_cost = Stack(in_layers=costs, axis=1)
    self.weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[all_cost, self.weights])
    self.set_loss(loss)
Exemple #15
0
  def build_graph(self):
    self.vertex_features = Feature(shape=(None, self.max_atoms, 75))
    self.adj_matrix = Feature(shape=(None, self.max_atoms, 1, self.max_atoms))
    self.mask = Feature(shape=(None, self.max_atoms, 1))

    gcnn1 = BatchNorm(
        GraphCNN(
            num_filters=64,
            in_layers=[self.vertex_features, self.adj_matrix, self.mask]))
    gcnn1 = Dropout(self.dropout, in_layers=gcnn1)
    gcnn2 = BatchNorm(
        GraphCNN(num_filters=64, in_layers=[gcnn1, self.adj_matrix, self.mask]))
    gcnn2 = Dropout(self.dropout, in_layers=gcnn2)
    gc_pool, adj_matrix = GraphCNNPool(
        num_vertices=32, in_layers=[gcnn2, self.adj_matrix, self.mask])
    gc_pool = BatchNorm(gc_pool)
    gc_pool = Dropout(self.dropout, in_layers=gc_pool)
    gcnn3 = BatchNorm(GraphCNN(num_filters=32, in_layers=[gc_pool, adj_matrix]))
    gcnn3 = Dropout(self.dropout, in_layers=gcnn3)
    gc_pool2, adj_matrix2 = GraphCNNPool(
        num_vertices=8, in_layers=[gcnn3, adj_matrix])
    gc_pool2 = BatchNorm(gc_pool2)
    gc_pool2 = Dropout(self.dropout, in_layers=gc_pool2)
    flattened = Flatten(in_layers=gc_pool2)
    readout = Dense(
        out_channels=256, activation_fn=tf.nn.relu, in_layers=flattened)
    costs = []
    self.my_labels = []
    for task in range(self.n_tasks):
      if self.mode == 'classification':
        classification = Dense(
            out_channels=2, activation_fn=None, in_layers=[readout])

        softmax = SoftMax(in_layers=[classification])
        self.add_output(softmax)

        label = Label(shape=(None, 2))
        self.my_labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
      if self.mode == 'regression':
        regression = Dense(
            out_channels=1, activation_fn=None, in_layers=[readout])
        self.add_output(regression)

        label = Label(shape=(None, 1))
        self.my_labels.append(label)
        cost = L2Loss(in_layers=[label, regression])
        costs.append(cost)
    if self.mode == "classification":
      entropy = Stack(in_layers=costs, axis=-1)
    elif self.mode == "regression":
      entropy = Stack(in_layers=costs, axis=1)
    self.my_task_weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[entropy, self.my_task_weights])
    self.set_loss(loss)
Exemple #16
0
    def _build(self):
        self.A_tilda_k = list()
        for k in range(1, self.k_max + 1):
            self.A_tilda_k.append(
                Feature(name="graph_adjacency_{}".format(k),
                        dtype=tf.float32,
                        shape=[None, self.max_nodes, self.max_nodes]))
        self.X = Feature(name='atom_features',
                         dtype=tf.float32,
                         shape=[None, self.max_nodes, self.num_node_features])

        graph_layers = list()
        adaptive_filters = list()

        for index, k in enumerate(range(1, self.k_max + 1)):

            in_layers = [self.A_tilda_k[index], self.X]

            adaptive_filters.append(
                AdaptiveFilter(batch_size=self.batch_size,
                               in_layers=in_layers,
                               num_nodes=self.max_nodes,
                               num_node_features=self.num_node_features,
                               combine_method=self.combine_method))

            graph_layers.append(
                KOrderGraphConv(batch_size=self.batch_size,
                                in_layers=in_layers +
                                [adaptive_filters[index]],
                                num_nodes=self.max_nodes,
                                num_node_features=self.num_node_features,
                                init='glorot_uniform'))

        graph_features = Concat(in_layers=graph_layers, axis=2)
        graph_features = ReLU(in_layers=[graph_features])
        flattened = Flatten(in_layers=[graph_features])

        dense1 = Dense(in_layers=[flattened],
                       out_channels=64,
                       activation_fn=tf.nn.relu)
        dense2 = Dense(in_layers=[dense1],
                       out_channels=16,
                       activation_fn=tf.nn.relu)
        dense3 = Dense(in_layers=[dense2],
                       out_channels=1 * self.n_tasks,
                       activation_fn=None)
        output = Reshape(in_layers=[dense3], shape=(-1, self.n_tasks, 1))
        self.add_output(output)

        label = Label(shape=(None, self.n_tasks, 1))
        weights = Weights(shape=(None, self.n_tasks))
        loss = ReduceSum(L2Loss(in_layers=[label, output]))

        weighted_loss = WeightedError(in_layers=[loss, weights])
        self.set_loss(weighted_loss)
Exemple #17
0
    def _build_graph(self):
        self.smiles_seqs = Feature(shape=(None, self.seq_length),
                                   dtype=tf.int32)
        # Character embedding
        Embedding = DTNNEmbedding(
            n_embedding=self.n_embedding,
            periodic_table_length=len(self.char_dict.keys()) + 1,
            in_layers=[self.smiles_seqs])
        pooled_outputs = []
        conv_layers = []
        for filter_size, num_filter in zip(self.kernel_sizes,
                                           self.num_filters):
            # Multiple convolutional layers with different filter widths
            conv_layers.append(
                Conv1D(kernel_size=filter_size,
                       filters=num_filter,
                       padding='valid',
                       in_layers=[Embedding]))
            # Max-over-time pooling
            pooled_outputs.append(
                ReduceMax(axis=1, in_layers=[conv_layers[-1]]))
        # Concat features from all filters(one feature per filter)
        concat_outputs = Concat(axis=1, in_layers=pooled_outputs)
        dropout = Dropout(dropout_prob=self.dropout,
                          in_layers=[concat_outputs])
        dense = Dense(out_channels=200,
                      activation_fn=tf.nn.relu,
                      in_layers=[dropout])
        # Highway layer from https://arxiv.org/pdf/1505.00387.pdf
        gather = Highway(in_layers=[dense])

        if self.mode == "classification":
            logits = Dense(out_channels=self.n_tasks * 2,
                           activation_fn=None,
                           in_layers=[gather])
            logits = Reshape(shape=(-1, self.n_tasks, 2), in_layers=[logits])
            output = SoftMax(in_layers=[logits])
            self.add_output(output)
            labels = Label(shape=(None, self.n_tasks, 2))
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])

        else:
            vals = Dense(out_channels=self.n_tasks * 1,
                         activation_fn=None,
                         in_layers=[gather])
            vals = Reshape(shape=(-1, self.n_tasks, 1), in_layers=[vals])
            self.add_output(vals)
            labels = Label(shape=(None, self.n_tasks, 1))
            loss = ReduceSum(L2Loss(in_layers=[labels, vals]))

        weights = Weights(shape=(None, self.n_tasks))
        weighted_loss = WeightedError(in_layers=[loss, weights])
        self.set_loss(weighted_loss)
Exemple #18
0
  def build_graph(self):
    """Building graph structures:
    Features => DTNNEmbedding => DTNNStep => DTNNStep => DTNNGather => Regression
    """
    self.atom_number = Feature(shape=(None,), dtype=tf.int32)
    self.distance = Feature(shape=(None, self.n_distance))
    self.atom_membership = Feature(shape=(None,), dtype=tf.int32)
    self.distance_membership_i = Feature(shape=(None,), dtype=tf.int32)
    self.distance_membership_j = Feature(shape=(None,), dtype=tf.int32)

    dtnn_embedding = DTNNEmbedding(
        n_embedding=self.n_embedding, in_layers=[self.atom_number])
    dtnn_layer1 = DTNNStep(
        n_embedding=self.n_embedding,
        n_distance=self.n_distance,
        in_layers=[
            dtnn_embedding, self.distance, self.distance_membership_i,
            self.distance_membership_j
        ])
    dtnn_layer2 = DTNNStep(
        n_embedding=self.n_embedding,
        n_distance=self.n_distance,
        in_layers=[
            dtnn_layer1, self.distance, self.distance_membership_i,
            self.distance_membership_j
        ])
    dtnn_gather = DTNNGather(
        n_embedding=self.n_embedding,
        layer_sizes=[self.n_hidden],
        n_outputs=self.n_tasks,
        output_activation=self.output_activation,
        in_layers=[dtnn_layer2, self.atom_membership])

    costs = []
    self.labels_fd = []
    for task in range(self.n_tasks):
      regression = DTNNExtract(task, in_layers=[dtnn_gather])
      self.add_output(regression)
      label = Label(shape=(None, 1))
      self.labels_fd.append(label)
      cost = L2Loss(in_layers=[label, regression])
      costs.append(cost)

    all_cost = Stack(in_layers=costs, axis=1)
    self.weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[all_cost, self.weights])
    self.set_loss(loss)
    def build_graph(self):

        self.atom_numbers = Feature(shape=(None, self.max_atoms),
                                    dtype=tf.int32)
        self.atom_flags = Feature(shape=(None,
                                         self.max_atoms * self.max_atoms))
        self.atom_feats = Feature(shape=(None, self.max_atoms * 4))

        reshaped_atom_flags = Reshape(in_layers=[self.atom_flags],
                                      shape=(-1, self.max_atoms,
                                             self.max_atoms))
        reshaped_atom_feats = Reshape(in_layers=[self.atom_feats],
                                      shape=(-1, self.max_atoms, 4))

        previous_layer = ANIFeat(in_layers=reshaped_atom_feats,
                                 max_atoms=self.max_atoms)

        self.featurized = previous_layer

        Hiddens = []
        for n_hidden in self.layer_structures:
            Hidden = AtomicDifferentiatedDense(
                self.max_atoms,
                n_hidden,
                self.atom_number_cases,
                activation=self.activation_fn,
                in_layers=[previous_layer, self.atom_numbers])
            Hiddens.append(Hidden)
            previous_layer = Hiddens[-1]

        regression = Dense(out_channels=1 * self.n_tasks,
                           activation_fn=None,
                           in_layers=[Hiddens[-1]])
        output = BPGather(self.max_atoms,
                          in_layers=[regression, reshaped_atom_flags])
        self.add_output(output)

        label = Label(shape=(None, self.n_tasks, 1))
        loss = ReduceSum(L2Loss(in_layers=[label, output]))
        weights = Weights(shape=(None, self.n_tasks))

        weighted_loss = WeightedError(in_layers=[loss, weights])
        if self.exp_loss:
            weighted_loss = Exp(in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
Exemple #20
0
    def build_graph(self):

        self.atom_numbers = Feature(shape=(None, self.max_atoms),
                                    dtype=tf.int32)
        self.atom_flags = Feature(shape=(None, self.max_atoms, self.max_atoms))
        self.atom_feats = Feature(shape=(None, self.max_atoms, 4))

        previous_layer = ANIFeat(in_layers=self.atom_feats,
                                 max_atoms=self.max_atoms)

        self.featurized = previous_layer

        Hiddens = []
        for n_hidden in self.layer_structures:
            Hidden = AtomicDifferentiatedDense(
                self.max_atoms,
                n_hidden,
                self.atom_number_cases,
                activation=self.activation_fn,
                in_layers=[previous_layer, self.atom_numbers])
            Hiddens.append(Hidden)
            previous_layer = Hiddens[-1]

        costs = []
        self.labels_fd = []
        for task in range(self.n_tasks):
            regression = Dense(out_channels=1,
                               activation_fn=None,
                               in_layers=[Hiddens[-1]])
            output = BPGather(self.max_atoms,
                              in_layers=[regression, self.atom_flags])
            self.add_output(output)

            label = Label(shape=(None, 1))
            self.labels_fd.append(label)
            cost = L2Loss(in_layers=[label, output])
            costs.append(cost)

        all_cost = Stack(in_layers=costs, axis=1)
        self.weights = Weights(shape=(None, self.n_tasks))
        loss = WeightedError(in_layers=[all_cost, self.weights])
        if self.exp_loss:
            loss = Exp(in_layers=[loss])
        self.set_loss(loss)
Exemple #21
0
def graph_conv_net(batch_size, prior, num_task):
    """
    Build a tensorgraph for multilabel classification task

    Return: features and labels layers
    """
    tg = TensorGraph(use_queue=False)
    if prior == True:
        add_on = num_task
    else:
        add_on = 0
    atom_features = Feature(shape=(None, 75 + 2 * add_on))
    circular_features = Feature(shape=(batch_size, 256), dtype=tf.float32)

    degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
    membership = Feature(shape=(None, ), dtype=tf.int32)
    deg_adjs = []
    for i in range(0, 10 + 1):
        deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
        deg_adjs.append(deg_adj)

    gc1 = GraphConv(64 + add_on,
                    activation_fn=tf.nn.elu,
                    in_layers=[atom_features, degree_slice, membership] +
                    deg_adjs)
    batch_norm1 = BatchNorm(in_layers=[gc1])
    gp1 = GraphPool(in_layers=[batch_norm1, degree_slice, membership] +
                    deg_adjs)

    gc2 = GraphConv(64 + add_on,
                    activation_fn=tf.nn.elu,
                    in_layers=[gc1, degree_slice, membership] + deg_adjs)
    batch_norm2 = BatchNorm(in_layers=[gc2])
    gp2 = GraphPool(in_layers=[batch_norm2, degree_slice, membership] +
                    deg_adjs)

    add = Concat(in_layers=[gp1, gp2])
    add = Dropout(0.5, in_layers=[add])
    dense = Dense(out_channels=128, activation_fn=tf.nn.elu, in_layers=[add])
    batch_norm3 = BatchNorm(in_layers=[dense])
    readout = GraphGather(batch_size=batch_size,
                          activation_fn=tf.nn.tanh,
                          in_layers=[batch_norm3, degree_slice, membership] +
                          deg_adjs)
    batch_norm4 = BatchNorm(in_layers=[readout])

    dense1 = Dense(out_channels=128,
                   activation_fn=tf.nn.elu,
                   in_layers=[circular_features])
    dense1 = BatchNorm(in_layers=[dense1])
    dense1 = Dropout(0.5, in_layers=[dense1])
    dense1 = Dense(out_channels=128,
                   activation_fn=tf.nn.elu,
                   in_layers=[circular_features])
    dense1 = BatchNorm(in_layers=[dense1])
    dense1 = Dropout(0.5, in_layers=[dense1])
    merge_feat = Concat(in_layers=[dense1, batch_norm4])
    merge = Dense(out_channels=256,
                  activation_fn=tf.nn.elu,
                  in_layers=[merge_feat])
    costs = []
    labels = []
    for task in range(num_task):
        classification = Dense(out_channels=2,
                               activation_fn=None,
                               in_layers=[merge])
        softmax = SoftMax(in_layers=[classification])
        tg.add_output(softmax)
        label = Label(shape=(None, 2))
        labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
    all_cost = Stack(in_layers=costs, axis=1)
    weights = Weights(shape=(None, num_task))
    loss = WeightedError(in_layers=[all_cost, weights])
    tg.set_loss(loss)
    #if prior == True:
    #    return tg, atom_features,circular_features, degree_slice, membership, deg_adjs, labels, weights#, prior_layer
    return tg, atom_features, circular_features, degree_slice, membership, deg_adjs, labels, weights
Exemple #22
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 n_classes=2,
                 **kwargs):
        """Create a MultitaskClassifier.

    In addition to the following arguments, this class also accepts
    all the keyword arguments from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of
      this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight
      initialization of each layer.  The length of this list should
      equal len(layer_sizes).  Alternatively this may be a single
      value instead of a list, in which case the same value is used
      for every layer.
    bias_init_consts: list or loat
      the value to initialize the biases in each layer to.  The
      length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in
      which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    n_classes: int
      the number of classes
    """
        super(MultitaskClassifier, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        self.n_classes = n_classes
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * n_layers
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * n_layers
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer

        # Compute the loss function for each label.
        self.neural_fingerprint = prev_layer

        logits = Reshape(shape=(-1, n_tasks, n_classes),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks * n_classes)
                         ])
        output = SoftMax(logits)
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, n_classes))
        weights = Weights(shape=(None, n_tasks))
        loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
        weighted_loss = WeightedError(in_layers=[loss, weights])
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
Exemple #23
0
    def build_graph(self):
        """
    Building graph structures:
    """
        self.atom_features = Feature(shape=(None, self.number_atom_features))
        self.degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)

        self.deg_adjs = []
        for i in range(0, 10 + 1):
            deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
            self.deg_adjs.append(deg_adj)
        in_layer = self.atom_features
        for layer_size, dropout in zip(self.graph_conv_layers, self.dropout):
            gc1_in = [in_layer, self.degree_slice, self.membership
                      ] + self.deg_adjs
            gc1 = GraphConv(layer_size,
                            activation_fn=tf.nn.relu,
                            in_layers=gc1_in)
            batch_norm1 = BatchNorm(in_layers=[gc1])
            if dropout > 0.0:
                batch_norm1 = Dropout(dropout, in_layers=batch_norm1)
            gp_in = [batch_norm1, self.degree_slice, self.membership
                     ] + self.deg_adjs
            in_layer = GraphPool(in_layers=gp_in)
        dense = Dense(out_channels=self.dense_layer_size,
                      activation_fn=tf.nn.relu,
                      in_layers=[in_layer])
        batch_norm3 = BatchNorm(in_layers=[dense])
        if self.dropout[-1] > 0.0:
            batch_norm3 = Dropout(self.dropout[-1], in_layers=batch_norm3)
        readout = GraphGather(
            batch_size=self.batch_size,
            activation_fn=tf.nn.tanh,
            in_layers=[batch_norm3, self.degree_slice, self.membership] +
            self.deg_adjs)

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=readout,
                                       out_channels=n_tasks * n_classes)
                             ])
            logits = TrimGraphOutput([logits, weights])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=readout, out_channels=n_tasks)])
            output = TrimGraphOutput([output, weights])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(
                    shape=(None, n_tasks),
                    in_layers=[Dense(in_layers=readout, out_channels=n_tasks)])
                log_var = TrimGraphOutput([log_var, weights])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
Exemple #24
0
    def build_graph(self):
        """Building graph structures:
                Features => DAGLayer => DAGGather => Classification or Regression
                """
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.parents = Feature(shape=(None, self.max_atoms, self.max_atoms),
                               dtype=tf.int32)
        self.calculation_orders = Feature(shape=(None, self.max_atoms),
                                          dtype=tf.int32)
        self.calculation_masks = Feature(shape=(None, self.max_atoms),
                                         dtype=tf.bool)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)
        self.n_atoms = Feature(shape=(), dtype=tf.int32)
        dag_layer1 = DAGLayer(n_graph_feat=self.n_graph_feat,
                              n_atom_feat=self.n_atom_feat,
                              max_atoms=self.max_atoms,
                              layer_sizes=self.layer_sizes,
                              dropout=self.dropout,
                              batch_size=self.batch_size,
                              in_layers=[
                                  self.atom_features, self.parents,
                                  self.calculation_orders,
                                  self.calculation_masks, self.n_atoms
                              ])
        dag_gather = DAGGather(n_graph_feat=self.n_graph_feat,
                               n_outputs=self.n_outputs,
                               max_atoms=self.max_atoms,
                               layer_sizes=self.layer_sizes_gather,
                               dropout=self.dropout,
                               in_layers=[dag_layer1, self.membership])

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=dag_gather,
                                       out_channels=n_tasks * n_classes)
                             ])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=dag_gather, out_channels=n_tasks)])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(shape=(None, n_tasks),
                                  in_layers=[
                                      Dense(in_layers=dag_gather,
                                            out_channels=n_tasks)
                                  ])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
Exemple #25
0
  def build_graph(self):
    """
    Building graph structures:
    """
    self.atom_features = Feature(shape=(None, 75))
    self.degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
    self.membership = Feature(shape=(None,), dtype=tf.int32)

    self.deg_adjs = []
    for i in range(0, 10 + 1):
      deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
      self.deg_adjs.append(deg_adj)
    gc1 = GraphConv(
        64,
        activation_fn=tf.nn.relu,
        in_layers=[self.atom_features, self.degree_slice, self.membership] +
        self.deg_adjs)
    batch_norm1 = BatchNorm(in_layers=[gc1])
    gp1 = GraphPool(in_layers=[batch_norm1, self.degree_slice, self.membership]
                    + self.deg_adjs)
    gc2 = GraphConv(
        64,
        activation_fn=tf.nn.relu,
        in_layers=[gp1, self.degree_slice, self.membership] + self.deg_adjs)
    batch_norm2 = BatchNorm(in_layers=[gc2])
    gp2 = GraphPool(in_layers=[batch_norm2, self.degree_slice, self.membership]
                    + self.deg_adjs)
    dense = Dense(out_channels=128, activation_fn=tf.nn.relu, in_layers=[gp2])
    batch_norm3 = BatchNorm(in_layers=[dense])
    readout = GraphGather(
        batch_size=self.batch_size,
        activation_fn=tf.nn.tanh,
        in_layers=[batch_norm3, self.degree_slice, self.membership] +
        self.deg_adjs)

    if self.error_bars == True:
      readout = Dropout(in_layers=[readout], dropout_prob=0.2)

    costs = []
    self.my_labels = []
    for task in range(self.n_tasks):
      if self.mode == 'classification':
        classification = Dense(
            out_channels=2, activation_fn=None, in_layers=[readout])

        softmax = SoftMax(in_layers=[classification])
        self.add_output(softmax)

        label = Label(shape=(None, 2))
        self.my_labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
      if self.mode == 'regression':
        regression = Dense(
            out_channels=1, activation_fn=None, in_layers=[readout])
        self.add_output(regression)

        label = Label(shape=(None, 1))
        self.my_labels.append(label)
        cost = L2Loss(in_layers=[label, regression])
        costs.append(cost)
    if self.mode == "classification":
      entropy = Concat(in_layers=costs, axis=-1)
    elif self.mode == "regression":
      entropy = Stack(in_layers=costs, axis=1)
    self.my_task_weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[entropy, self.my_task_weights])
    self.set_loss(loss)
Exemple #26
0
  def build_graph(self):
    """Building graph structures:
        Features => WeaveLayer => WeaveLayer => Dense => WeaveGather => Classification or Regression
        """
    self.atom_features = Feature(shape=(None, self.n_atom_feat))
    self.pair_features = Feature(shape=(None, self.n_pair_feat))
    combined = Combine_AP(in_layers=[self.atom_features, self.pair_features])
    self.pair_split = Feature(shape=(None,), dtype=tf.int32)
    self.atom_split = Feature(shape=(None,), dtype=tf.int32)
    self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32)
    weave_layer1 = WeaveLayer(
        n_atom_input_feat=self.n_atom_feat,
        n_pair_input_feat=self.n_pair_feat,
        n_atom_output_feat=self.n_hidden,
        n_pair_output_feat=self.n_hidden,
        in_layers=[combined, self.pair_split, self.atom_to_pair])
    weave_layer2 = WeaveLayer(
        n_atom_input_feat=self.n_hidden,
        n_pair_input_feat=self.n_hidden,
        n_atom_output_feat=self.n_hidden,
        n_pair_output_feat=self.n_hidden,
        update_pair=False,
        in_layers=[weave_layer1, self.pair_split, self.atom_to_pair])
    separated = Separate_AP(in_layers=[weave_layer2])
    dense1 = Dense(
        out_channels=self.n_graph_feat,
        activation_fn=tf.nn.tanh,
        in_layers=[separated])
    batch_norm1 = BatchNormalization(epsilon=1e-5, mode=1, in_layers=[dense1])
    weave_gather = WeaveGather(
        self.batch_size,
        n_input=self.n_graph_feat,
        gaussian_expand=True,
        in_layers=[batch_norm1, self.atom_split])

    costs = []
    self.labels_fd = []
    for task in range(self.n_tasks):
      if self.mode == "classification":
        classification = Dense(
            out_channels=2, activation_fn=None, in_layers=[weave_gather])
        softmax = SoftMax(in_layers=[classification])
        self.add_output(softmax)

        label = Label(shape=(None, 2))
        self.labels_fd.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
      if self.mode == "regression":
        regression = Dense(
            out_channels=1, activation_fn=None, in_layers=[weave_gather])
        self.add_output(regression)

        label = Label(shape=(None, 1))
        self.labels_fd.append(label)
        cost = L2Loss(in_layers=[label, regression])
        costs.append(cost)
    if self.mode == "classification":
      all_cost = Concat(in_layers=costs, axis=1)
    elif self.mode == "regression":
      all_cost = Stack(in_layers=costs, axis=1)
    self.weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[all_cost, self.weights])
    self.set_loss(loss)
Exemple #27
0
def graph_conv_model(batch_size, tasks):
    model = TensorGraph(model_dir=model_dir,
                        batch_size=batch_size,
                        use_queue=False)
    atom_features = Feature(shape=(None, 75))
    degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
    membership = Feature(shape=(None, ), dtype=tf.int32)

    deg_adjs = []
    for i in range(0, 10 + 1):
        deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
        deg_adjs.append(deg_adj)
    gc1 = GraphConv(64,
                    activation_fn=tf.nn.relu,
                    in_layers=[atom_features, degree_slice, membership] +
                    deg_adjs)
    batch_norm1 = BatchNorm(in_layers=[gc1])
    gp1 = GraphPool(in_layers=[batch_norm1, degree_slice, membership] +
                    deg_adjs)
    gc2 = GraphConv(64,
                    activation_fn=tf.nn.relu,
                    in_layers=[gp1, degree_slice, membership] + deg_adjs)
    batch_norm2 = BatchNorm(in_layers=[gc2])
    gp2 = GraphPool(in_layers=[batch_norm2, degree_slice, membership] +
                    deg_adjs)
    dense = Dense(out_channels=128, activation_fn=None, in_layers=[gp2])
    batch_norm3 = BatchNorm(in_layers=[dense])
    gg1 = GraphGather(batch_size=batch_size,
                      activation_fn=tf.nn.tanh,
                      in_layers=[batch_norm3, degree_slice, membership] +
                      deg_adjs)

    costs = []
    labels = []
    for task in tasks:
        classification = Dense(out_channels=2,
                               activation_fn=None,
                               in_layers=[gg1])

        softmax = SoftMax(in_layers=[classification])
        model.add_output(softmax)

        label = Label(shape=(None, 2))
        labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)

    entropy = Concat(in_layers=costs)
    task_weights = Weights(shape=(None, len(tasks)))
    loss = WeightedError(in_layers=[entropy, task_weights])
    model.set_loss(loss)

    def feed_dict_generator(dataset, batch_size, epochs=1):
        for epoch in range(epochs):
            for ind, (X_b, y_b, w_b, ids_b) in enumerate(
                    dataset.iterbatches(batch_size, pad_batches=True)):
                d = {}
                for index, label in enumerate(labels):
                    d[label] = to_one_hot(y_b[:, index])
                d[task_weights] = w_b
                multiConvMol = ConvMol.agglomerate_mols(X_b)
                d[atom_features] = multiConvMol.get_atom_features()
                d[degree_slice] = multiConvMol.deg_slice
                d[membership] = multiConvMol.membership
                for i in range(1, len(multiConvMol.get_deg_adjacency_lists())):
                    d[deg_adjs[i -
                               1]] = multiConvMol.get_deg_adjacency_lists()[i]
                yield d

    return model, feed_dict_generator, labels, task_weights
Exemple #28
0
    def build_graph(self):
        # Build placeholders
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.pair_features = Feature(shape=(None, self.n_pair_feat))
        self.atom_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32)

        message_passing = MessagePassing(self.T,
                                         message_fn='enn',
                                         update_fn='gru',
                                         n_hidden=self.n_hidden,
                                         in_layers=[
                                             self.atom_features,
                                             self.pair_features,
                                             self.atom_to_pair
                                         ])

        atom_embeddings = Dense(self.n_hidden, in_layers=[message_passing])

        mol_embeddings = SetGather(
            self.M,
            self.batch_size,
            n_hidden=self.n_hidden,
            in_layers=[atom_embeddings, self.atom_split])

        dense1 = Dense(out_channels=2 * self.n_hidden,
                       activation_fn=tf.nn.relu,
                       in_layers=[mol_embeddings])

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=dense1,
                                       out_channels=n_tasks * n_classes)
                             ])
            logits = TrimGraphOutput([logits, weights])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=dense1, out_channels=n_tasks)])
            output = TrimGraphOutput([output, weights])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(
                    shape=(None, n_tasks),
                    in_layers=[Dense(in_layers=dense1, out_channels=n_tasks)])
                log_var = TrimGraphOutput([log_var, weights])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
Exemple #29
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=[0.02],
                 bias_init_consts=[1.0],
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=[0.5],
                 n_classes=2,
                 **kwargs):
        """Create a TensorGraphMultiTaskClassifier.

    In addition to the following arguments, this class also accepts all the keywork arguments
    from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes).
    bias_init_consts: list
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes).
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
    n_classes: int
      the number of classes
    """
        super(TensorGraphMultiTaskClassifier,
              self).__init__(mode='classification', **kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        self.n_classes = n_classes

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=tf.nn.relu,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer

        # Compute the loss function for each label.

        output = Reshape(shape=(-1, n_tasks, n_classes),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks * n_classes)
                         ])
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, n_classes))
        weights = Weights(shape=(None, n_tasks))
        loss = SoftMaxCrossEntropy(in_layers=[labels, output])
        weighted_loss = WeightedError(in_layers=[loss, weights])
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
def sluice_model(batch_size, tasks):
    model = TensorGraph(model_dir=model_dir,
                        batch_size=batch_size,
                        use_queue=False,
                        tensorboard=True)
    atom_features = Feature(shape=(None, 75))
    degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
    membership = Feature(shape=(None, ), dtype=tf.int32)

    sluice_loss = []
    deg_adjs = []
    for i in range(0, 10 + 1):
        deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
        deg_adjs.append(deg_adj)

    gc1 = GraphConv(64,
                    activation_fn=tf.nn.relu,
                    in_layers=[atom_features, degree_slice, membership] +
                    deg_adjs)

    as1 = AlphaShare(in_layers=[gc1, gc1])
    sluice_loss.append(gc1)

    batch_norm1a = BatchNorm(in_layers=[as1[0]])
    batch_norm1b = BatchNorm(in_layers=[as1[1]])

    gp1a = GraphPool(in_layers=[batch_norm1a, degree_slice, membership] +
                     deg_adjs)
    gp1b = GraphPool(in_layers=[batch_norm1b, degree_slice, membership] +
                     deg_adjs)

    gc2a = GraphConv(64,
                     activation_fn=tf.nn.relu,
                     in_layers=[gp1a, degree_slice, membership] + deg_adjs)
    gc2b = GraphConv(64,
                     activation_fn=tf.nn.relu,
                     in_layers=[gp1b, degree_slice, membership] + deg_adjs)

    as2 = AlphaShare(in_layers=[gc2a, gc2b])
    sluice_loss.append(gc2a)
    sluice_loss.append(gc2b)

    batch_norm2a = BatchNorm(in_layers=[as2[0]])
    batch_norm2b = BatchNorm(in_layers=[as2[1]])

    gp2a = GraphPool(in_layers=[batch_norm2a, degree_slice, membership] +
                     deg_adjs)
    gp2b = GraphPool(in_layers=[batch_norm2b, degree_slice, membership] +
                     deg_adjs)

    densea = Dense(out_channels=128, activation_fn=None, in_layers=[gp2a])
    denseb = Dense(out_channels=128, activation_fn=None, in_layers=[gp2b])

    batch_norm3a = BatchNorm(in_layers=[densea])
    batch_norm3b = BatchNorm(in_layers=[denseb])

    as3 = AlphaShare(in_layers=[batch_norm3a, batch_norm3b])
    sluice_loss.append(batch_norm3a)
    sluice_loss.append(batch_norm3b)

    gg1a = GraphGather(batch_size=batch_size,
                       activation_fn=tf.nn.tanh,
                       in_layers=[as3[0], degree_slice, membership] + deg_adjs)
    gg1b = GraphGather(batch_size=batch_size,
                       activation_fn=tf.nn.tanh,
                       in_layers=[as3[1], degree_slice, membership] + deg_adjs)

    costs = []
    labels = []
    count = 0
    for task in tasks:
        if count < len(tasks) / 2:
            classification = Dense(out_channels=2,
                                   activation_fn=None,
                                   in_layers=[gg1a])
            print("first half:")
            print(task)
        else:
            classification = Dense(out_channels=2,
                                   activation_fn=None,
                                   in_layers=[gg1b])
            print('second half')
            print(task)
        count += 1

        softmax = SoftMax(in_layers=[classification])
        model.add_output(softmax)

        label = Label(shape=(None, 2))
        labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)

    entropy = Concat(in_layers=costs)
    task_weights = Weights(shape=(None, len(tasks)))
    task_loss = WeightedError(in_layers=[entropy, task_weights])

    s_cost = SluiceLoss(in_layers=sluice_loss)

    total_loss = Add(in_layers=[task_loss, s_cost])
    model.set_loss(total_loss)

    def feed_dict_generator(dataset, batch_size, epochs=1):
        for epoch in range(epochs):
            for ind, (X_b, y_b, w_b, ids_b) in enumerate(
                    dataset.iterbatches(batch_size, pad_batches=True)):
                d = {}
                for index, label in enumerate(labels):
                    d[label] = to_one_hot(y_b[:, index])
                d[task_weights] = w_b
                multiConvMol = ConvMol.agglomerate_mols(X_b)
                d[atom_features] = multiConvMol.get_atom_features()
                d[degree_slice] = multiConvMol.deg_slice
                d[membership] = multiConvMol.membership
                for i in range(1, len(multiConvMol.get_deg_adjacency_lists())):
                    d[deg_adjs[i -
                               1]] = multiConvMol.get_deg_adjacency_lists()[i]
                yield d

    return model, feed_dict_generator, labels, task_weights
Exemple #31
0
    def build_graph(self):
        """Building graph structures:
                Features => WeaveLayer => WeaveLayer => Dense => WeaveGather => Classification or Regression
                """
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.pair_features = Feature(shape=(None, self.n_pair_feat))
        self.pair_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32)
        weave_layer1A, weave_layer1P = WeaveLayerFactory(
            n_atom_input_feat=self.n_atom_feat,
            n_pair_input_feat=self.n_pair_feat,
            n_atom_output_feat=self.n_hidden,
            n_pair_output_feat=self.n_hidden,
            in_layers=[
                self.atom_features, self.pair_features, self.pair_split,
                self.atom_to_pair
            ])
        weave_layer2A, weave_layer2P = WeaveLayerFactory(
            n_atom_input_feat=self.n_hidden,
            n_pair_input_feat=self.n_hidden,
            n_atom_output_feat=self.n_hidden,
            n_pair_output_feat=self.n_hidden,
            update_pair=False,
            in_layers=[
                weave_layer1A, weave_layer1P, self.pair_split,
                self.atom_to_pair
            ])
        dense1 = Dense(out_channels=self.n_graph_feat,
                       activation_fn=tf.nn.tanh,
                       in_layers=weave_layer2A)
        batch_norm1 = BatchNorm(epsilon=1e-5, in_layers=[dense1])
        weave_gather = WeaveGather(self.batch_size,
                                   n_input=self.n_graph_feat,
                                   gaussian_expand=True,
                                   in_layers=[batch_norm1, self.atom_split])

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=weave_gather,
                                       out_channels=n_tasks * n_classes)
                             ])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(shape=(None, n_tasks),
                             in_layers=[
                                 Dense(in_layers=weave_gather,
                                       out_channels=n_tasks)
                             ])
            self.add_output(output)
            weighted_loss = ReduceSum(
                L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)