def test_DTNNEmbedding_pickle(): tg = TensorGraph() atom_numbers = Feature(shape=(None, 23), dtype=tf.int32) Embedding = DTNNEmbedding(in_layers=[atom_numbers]) tg.add_output(Embedding) tg.set_loss(Embedding) tg.build() tg.save()
def test_CombineMeanStd_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = CombineMeanStd(in_layers=[feature, feature]) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_LSTM_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 10, 10)) layer = LSTM(n_hidden=10, batch_size=tg.batch_size, in_layers=feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_Gather_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Gather(indices=[[0], [2], [3]], in_layers=feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_DAGGather_pickle(): tg = TensorGraph() atom_features = Feature(shape=(None, 30)) membership = Feature(shape=(None,), dtype=tf.int32) Gather = DAGGather(in_layers=[atom_features, membership]) tg.add_output(Gather) tg.set_loss(Gather) tg.build() tg.save()
def testGraphCNNPoolLayer_pickle(): V = Feature(shape=(None, 200, 50)) A = Feature(shape=(None, 200, 1, 200)) gcnnpool = GraphEmbedPoolLayer(32, in_layers=[V, A]) tg = TensorGraph() tg.add_output(gcnnpool) tg.set_loss(gcnnpool) tg.build() tg.save()
def test_Exp_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Exp(feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_Repeat_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Repeat(n_times=10, in_layers=feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_DTNNExtract_pickle(): tg = TensorGraph() atom_features = Feature(shape=(None, 30)) Ext = DTNNExtract(0, in_layers=[atom_features]) tg.add_output(Ext) tg.set_loss(Ext) tg.build() tg.save()
def test_BatchNorm_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 10)) layer = BatchNorm(in_layers=feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_SigmoidCrossEntropy_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = SigmoidCrossEntropy(in_layers=[feature, feature]) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_ToFloat_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = ToFloat(in_layers=[feature]) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_Constant_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Constant(np.array([15.0])) output = Add(in_layers=[feature, layer]) tg.add_output(output) tg.set_loss(output) tg.build() tg.save()
def test_SetGather_pickle(): tg = TensorGraph() atom_feature = Feature(shape=(None, 100)) atom_split = Feature(shape=(None,), dtype=tf.int32) Gather = SetGather(5, 16, in_layers=[atom_feature, atom_split]) tg.add_output(Gather) tg.set_loss(Gather) tg.build() tg.save()
def test_Reshape_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Reshape(shape=(None, 2), in_layers=feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_WeightedError_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 10)) layer = WeightedError(in_layers=[feature, feature]) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_Conv3DTranspose_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 10, 10, 10, 1)) layer = Conv3DTranspose(num_outputs=3, in_layers=feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_StopGradient_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) output = StopGradient(feature) tg.add_output(output) tg.set_loss(output) tg.build() tg.save()
def test_Squeeze_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Squeeze(squeeze_dims=-1, in_layers=feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_Conv3D_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 10, 10, 10, 1)) layer = Conv3D(num_outputs=3, in_layers=feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_hingeloss_pickle(): tg = TensorGraph() feature = Feature(shape=(1, None)) layer = Hingeloss(in_layers=[feature, feature]) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_Dense_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) dense = Dense(out_channels=1, in_layers=feature) tg.add_output(dense) tg.set_loss(dense) tg.build() tg.save()
def test_ReduceSquareDifference_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = ReduceSquareDifference(in_layers=[feature, feature]) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_Cast_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Cast(in_layers=feature, dtype=tf.int32) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_Conv1D_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1, 1)) conv = Conv1D(2, 1, in_layers=feature) tg.add_output(conv) tg.set_loss(conv) tg.build() tg.save()
def test_Slice_pickle(): V = Feature(shape=(None, 10)) out = Slice(5, 1, in_layers=[V]) tg = TensorGraph() tg.add_output(out) tg.set_loss(out) tg.build() tg.save()
def test_Sigmoid_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Sigmoid(in_layers=feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_Transpose_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Transpose(perm=(1, 0), in_layers=feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_Squeeze_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Squeeze(in_layers=feature) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_Variable_pickle(): tg = TensorGraph() feature = Feature(shape=(tg.batch_size, 1)) layer = Variable(np.array([15.0])) output = Multiply(in_layers=[feature, layer]) tg.add_output(output) tg.set_loss(output) tg.build() tg.save()
def test_SparseSoftmaxCrossEntropy_pickle(): tg = TensorGraph() logits = Feature(shape=(tg.batch_size, 5)) labels = Feature(shape=(tg.batch_size,), dtype=tf.int32) layer = SparseSoftMaxCrossEntropy(in_layers=[labels, logits]) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def test_SparseSoftmaxCrossEntropy_pickle(): tg = TensorGraph() logits = Feature(shape=(tg.batch_size, 5)) labels = Feature(shape=(tg.batch_size, ), dtype=tf.int32) layer = SparseSoftMaxCrossEntropy(in_layers=[labels, logits]) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()
def testGraphCNN_pickle(): V = Feature(shape=(None, 200, 50)) A = Feature(shape=(None, 200, 1, 200)) gcnn = GraphCNN(32, in_layers=[V, A]) tg = TensorGraph() tg.add_output(gcnn) tg.set_loss(gcnn) tg.build() tg.save()
def test_MP_pickle(): tg = TensorGraph() atom_feature = Feature(shape=(None, 75)) pair_feature = Feature(shape=(None, 14)) atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32) MP = MessagePassing(5, in_layers=[atom_feature, pair_feature, atom_to_pair]) tg.add_output(MP) tg.set_loss(MP) tg.build() tg.save()
def test_hingeloss_pickle(): tg = TensorGraph() feature = Feature(shape=(1, None)) layer = HingeLoss(in_layers=[feature, feature]) tg.add_output(layer) tg.set_loss(layer) tg.build() tg.save()