Exemple #1
0
 def test_sota_estimator(self):
     aggregation.sota_estimator(query_pool=self.initQueries,
                                api=self.dblp,
                                match_term=["row['info']['title']"],
                                uniqueid="row['info']['key']",
                                query_num=1)
     assert True
Exemple #2
0
 def test_sota_estimator(self):
     aggregation.sota_estimator(query_pool=self.initQueries,
                                api=self.dblp,
                                match_term=["info.title"],
                                uniqueid="info.key",
                                query_num=1)
     self.dblp.getSession().close()
     assert True
Exemple #3
0
from deeperlib.api.dblp.publapi import PublApi
from deeperlib.core import utils
from deeperlib.data_processing.local_data import LocalData
from deeperlib.estimator import aggregation

# ==== Sota-Estimator Dblp ====
search_term = 'q'
parameters = {'h': 1000}
dblp = PublApi(delay=5, search_term=search_term, **parameters)
localdata_file = 'dblp_10000'
localdata = LocalData(localdata_file, 'pkl', "row['key']", ["row['title']"],
                      ["row['title']"])
localdata_ids, localdata_query, localdata_er = localdata.getlocalData()
initQueries = utils.queryGene(localdata_query, 2)
aggregation.sota_estimator(query_pool=initQueries,
                           api=dblp,
                           match_term=["row['info']['title']"],
                           uniqueid="row['info']['key']",
                           query_num=1)

# ==== Stratified-Estimator Dblp ====
dblp = PublApi(delay=5, search_term=search_term, **parameters)
aggregation.stratified_estimator(query_pool=initQueries,
                                 api=dblp,
                                 match_term=["row['info']['title']"],
                                 candidate_rate=0.2,
                                 query_num=100)
dblp.getSession().close()
from deeperlib.api.dblp.publapi import PublApi
from deeperlib.core import utils
from deeperlib.data_processing.local_data import LocalData
from deeperlib.estimator import aggregation

# ==== Sota-Estimator Dblp ====
search_term = 'q'
parameters = {'h': 1000}
dblp = PublApi(top_k=1000, delay=5, search_term=search_term, **parameters)
localdata_file = 'dblp_sample.csv'
localdata = LocalData(localdata_file, 'csv', "key", ["title"], ["title"])
localdata_ids, localdata_query, localdata_er = localdata.getlocalData()
initQueries = utils.queryGene(localdata_query, 2)
aggregation.sota_estimator(query_pool=initQueries,
                           api=dblp,
                           match_term=["info.title"],
                           uniqueid="info.key",
                           query_num=1)

# ==== Stratified-Estimator Dblp ====
aggregation.stratified_estimator(query_pool=initQueries,
                                 api=dblp,
                                 match_term=["info.title"],
                                 candidate_rate=0.2,
                                 query_num=100)
dblp.getSession().close()