def test_model_workflow_partial_mode(): """Run the workflow of deep forest with a local buffer.""" case_kwargs = copy.deepcopy(kwargs) case_kwargs.update({"partial_mode": True}) model = CascadeForestRegressor(**case_kwargs) model.fit(X_train, y_train) # Predictions before saving y_pred_before = model.predict(X_test).astype(np.float32) # Save and Reload model.save(save_dir) model = CascadeForestRegressor(**case_kwargs) model.load(save_dir) # Predictions after loading y_pred_after = model.predict(X_test).astype(np.float32) # Make sure the same predictions before and after model serialization assert_array_equal(y_pred_before, y_pred_after) model.clean() # clear the buffer shutil.rmtree(save_dir)
def test_regressor_custom_cascade_layer_workflow_in_memory(y_train): model = CascadeForestRegressor() n_estimators = 4 estimators = [DecisionTreeRegressor() for _ in range(n_estimators)] model.set_estimator(estimators) # set custom base estimators predictor = DecisionTreeRegressor() model.set_predictor(predictor) model.fit(X_train_reg, y_train) y_pred_before = model.predict(X_test_reg) # Save and Reload model.save(save_dir) model = CascadeForestRegressor() model.load(save_dir) # Predictions after loading y_pred_after = model.predict(X_test_reg) # Make sure the same predictions before and after model serialization assert_array_equal(y_pred_before, y_pred_after) assert (model.get_estimator(0, 0, "custom") is model._get_layer(0).estimators_["0-0-custom"].estimator_) model.clean() # clear the buffer shutil.rmtree(save_dir)
def test_model_workflow_in_memory(backend): """Run the workflow of deep forest with in-memory mode.""" case_kwargs = copy.deepcopy(kwargs) case_kwargs.update({"partial_mode": False}) case_kwargs.update({"backend": backend}) model = CascadeForestRegressor(**case_kwargs) model.fit(X_train, y_train) # Predictions before saving y_pred_before = model.predict(X_test).astype(np.float32) # Save and Reload model.save(save_dir) model = CascadeForestRegressor(**case_kwargs) model.load(save_dir) # Make sure the same predictions before and after model serialization y_pred_after = model.predict(X_test).astype(np.float32) assert_array_equal(y_pred_before, y_pred_after) shutil.rmtree(save_dir)
def test_model_invalid_training_params(param): case_kwargs = copy.deepcopy(toy_kwargs) case_kwargs.update(param[1]) model = CascadeForestRegressor(**case_kwargs) with pytest.raises(ValueError) as excinfo: model.fit(X_train, y_train) if param[0] == 0: assert "max_layers" in str(excinfo.value) elif param[0] == 1: assert "n_tolerant_rounds" in str(excinfo.value) elif param[0] == 2: assert "delta " in str(excinfo.value)
def test_model_properties_after_fitting(): """Check the model properties after fitting a deep forest model.""" model = CascadeForestRegressor(**toy_kwargs) model.fit(X_train, y_train) assert len(model) == model.n_layers_ assert model[0] is model._get_layer(0) with pytest.raises(ValueError) as excinfo: model._get_layer(model.n_layers_) assert "The layer index should be in the range" in str(excinfo.value) with pytest.raises(RuntimeError) as excinfo: model._set_layer(0, None) assert "already exists in the internal container" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: model._get_binner(model.n_layers_ + 1) assert "The binner index should be in the range" in str(excinfo.value) with pytest.raises(RuntimeError) as excinfo: model._set_binner(0, None) assert "already exists in the internal container" in str(excinfo.value)
n_estimators=n_estimators, n_trees=n_trees, max_depth=max_depth, min_samples_leaf=min_samples_leaf, use_predictor=use_predictor, predictor=predictor, n_tolerant_rounds=n_tolerant_rounds, partial_mode=partial_mode, delta=delta, n_jobs=n_jobs, random_state=random_state, verbose=verbose, ) tic = time.time() model.fit(X_train, y_train) toc = time.time() training_time = toc - tic tic = time.time() y_pred = model.predict(X_test) toc = time.time() testing_time = toc - tic testing_mse = mean_squared_error(y_test, y_pred) records.append( (training_time, testing_time, testing_mse, len(model))) model.clean() # Writing with open("{}_deep_forest_regression.txt".format(dataset),