def create_problem(load_data): Problem = NaProblem(seed=2019) Problem.load_data(load_data) #Problem.preprocessing(minmaxstdscaler) Problem.search_space(create_search_space, num_layers=10) Problem.hyperparameters( verbose=0, batch_size=100, learning_rate=0.001, #lr search: 0.01, lr post: 0.001 optimizer='adam', num_epochs=50, callbacks=dict(EarlyStopping=dict( monitor='val_r2', mode='max', verbose=0, patience=5))) Problem.loss('mse') Problem.metrics(['r2']) Problem.objective('val_r2__last') Problem.post_training(num_epochs=1000, metrics=['r2'], callbacks=dict(ModelCheckpoint={ 'monitor': 'val_r2', 'mode': 'max', 'save_best_only': True, 'verbose': 1 }, EarlyStopping={ 'monitor': 'val_r2', 'mode': 'max', 'verbose': 1, 'patience': 50 }, TensorBoard=dict(log_dir='{}'.format( time.time()), ))) if __name__ == '__main__': print(Problem) from pprint import pprint pprint(Problem.space)
Problem.hyperparameters( batch_size=64, learning_rate=0.001, optimizer='adam', num_epochs=1, ) Problem.loss('mse') Problem.metrics(['r2']) Problem.objective('val_r2__last') Problem.post_training(num_epochs=1000, metrics=['r2'], model_checkpoint={ 'monitor': 'val_r2', 'mode': 'max', 'save_best_only': True, 'verbose': 1 }, early_stopping={ 'monitor': 'val_r2', 'mode': 'max', 'verbose': 1, 'patience': 20 }) if __name__ == '__main__': print(Problem)
Problem.objective('r2__max') # or 'val_acc__last' ? Problem.post_training( repeat=1, num_epochs=1000, metrics=["mse", "r2"], callbacks=dict() # callbacks=dict( # ModelCheckpoint={ # 'monitor': 'val_r2', # 'mode': 'max', # 'save_best_only': True, # 'verbose': 1 # }, # EarlyStopping={ # 'monitor': 'val_r2', # 'mode': 'max', # 'verbose': 1, # 'patience': 10 # }, # TensorBoard={ # 'log_dir':'tb_logs', # 'histogram_freq':1, # 'batch_size':64, # 'write_graph':True, # 'write_grads':True, # 'write_images':True, # 'update_freq':'epoch' # }) ) # Just to print your problem, to test its definition and imports in the current python environment.
callbacks=dict(EarlyStopping=dict( monitor='val_r2', mode='max', verbose=0, patience=5))) Problem.loss('mse') Problem.metrics(['r2']) Problem.objective('val_r2__last') Problem.post_training(num_epochs=1000, metrics=['r2'], callbacks=dict(ModelCheckpoint={ 'monitor': 'val_r2', 'mode': 'max', 'save_best_only': True, 'verbose': 1 }, EarlyStopping={ 'monitor': 'val_r2', 'mode': 'max', 'verbose': 1, 'patience': 50 }, TensorBoard=dict(log_dir='{}'.format( time.time()), ))) if __name__ == '__main__': print(Problem) from pprint import pprint pprint(Problem.space)