Exemple #1
0
def profile_tf_runningmeanstd():
    import time
    from deephyper.search.nas.baselines.common import tf_util

    tf_util.get_session( config=tf.ConfigProto(
        inter_op_parallelism_threads=1,
        intra_op_parallelism_threads=1,
        allow_soft_placement=True
    ))

    x = np.random.random((376,))

    n_trials = 10000
    rms = RunningMeanStd()
    tfrms = TfRunningMeanStd()

    tic1 = time.time()
    for _ in range(n_trials):
        rms.update(x)

    tic2 = time.time()
    for _ in range(n_trials):
        tfrms.update(x)

    tic3 = time.time()

    print('rms update time ({} trials): {} s'.format(n_trials, tic2 - tic1))
    print('tfrms update time ({} trials): {} s'.format(n_trials, tic3 - tic2))


    tic1 = time.time()
    for _ in range(n_trials):
        z1 = rms.mean

    tic2 = time.time()
    for _ in range(n_trials):
        z2 = tfrms.mean

    assert z1 == z2

    tic3 = time.time()

    print('rms get mean time ({} trials): {} s'.format(n_trials, tic2 - tic1))
    print('tfrms get mean time ({} trials): {} s'.format(n_trials, tic3 - tic2))



    '''
Exemple #2
0
def build_env(args):
    ncpu = multiprocessing.cpu_count()
    if sys.platform == 'darwin':
        ncpu //= 2
    nenv = args.num_env or ncpu
    alg = args.alg
    seed = args.seed

    env_type, env_id = get_env_type(args)

    if env_type in {'atari', 'retro'}:
        if alg == 'deepq':
            env = make_env(env_id,
                           env_type,
                           seed=seed,
                           wrapper_kwargs={'frame_stack': True})
        elif alg == 'trpo_mpi':
            env = make_env(env_id, env_type, seed=seed)
        else:
            frame_stack_size = 4
            env = make_vec_env(env_id,
                               env_type,
                               nenv,
                               seed,
                               gamestate=args.gamestate,
                               reward_scale=args.reward_scale)
            env = VecFrameStack(env, frame_stack_size)

    else:
        config = tf.ConfigProto(allow_soft_placement=True,
                                intra_op_parallelism_threads=1,
                                inter_op_parallelism_threads=1)
        config.gpu_options.allow_growth = True
        get_session(config=config)

        flatten_dict_observations = alg not in {'her'}
        env = make_vec_env(env_id,
                           env_type,
                           args.num_env or 1,
                           seed,
                           reward_scale=args.reward_scale,
                           flatten_dict_observations=flatten_dict_observations)

        if env_type == 'mujoco':
            env = VecNormalize(env)

    return env
 def add_all_summary(self, writer, values, iter):
     # Note that the order of the incoming ```values``` should be the same as the that of the
     #            ```scalar_keys``` given in ```__init__```
     if np.sum(np.isnan(values) + 0) != 0:
         return
     sess = U.get_session()
     keys = self.scalar_summaries_ph + self.histogram_summaries_ph
     feed_dict = {}
     for k, v in zip(keys, values):
         feed_dict.update({k: v})
     summaries_str = sess.run(self.summaries, feed_dict)
     writer.add_summary(summaries_str, iter)
def test_nonfreeze():
    np.random.seed(0)
    tf.set_random_seed(0)

    a = tf.Variable(np.random.randn(3).astype('float32'))
    b = tf.Variable(np.random.randn(2,5).astype('float32'))
    loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b))

    stepsize = 1e-2
    # for some reason the session config with inter_op_parallelism_threads was causing
    # nested sess.run calls to freeze
    config = tf.ConfigProto(inter_op_parallelism_threads=1)
    sess = U.get_session(config=config)
    update_op = MpiAdamOptimizer(comm=MPI.COMM_WORLD, learning_rate=stepsize).minimize(loss)
    sess.run(tf.global_variables_initializer())
    losslist_ref = []
    for i in range(100):
        l,_ = sess.run([loss, update_op])
        print(i, l)
        losslist_ref.append(l)
Exemple #5
0
    def __init__(self, epsilon=1e-4, shape=(), scope=''):
        sess = get_session()

        self._new_mean = tf.placeholder(shape=shape, dtype=tf.float64)
        self._new_var = tf.placeholder(shape=shape, dtype=tf.float64)
        self._new_count = tf.placeholder(shape=(), dtype=tf.float64)


        with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
            self._mean  = tf.get_variable('mean',  initializer=np.zeros(shape, 'float64'),      dtype=tf.float64)
            self._var   = tf.get_variable('std',   initializer=np.ones(shape, 'float64'),       dtype=tf.float64)
            self._count = tf.get_variable('count', initializer=np.full((), epsilon, 'float64'), dtype=tf.float64)

        self.update_ops = tf.group([
            self._var.assign(self._new_var),
            self._mean.assign(self._new_mean),
            self._count.assign(self._new_count)
        ])

        sess.run(tf.variables_initializer([self._mean, self._var, self._count]))
        self.sess = sess
        self._set_mean_var_count()
Exemple #6
0
    def _create_network(self, reuse=False):
        logger.info("Creating a DDPG agent with action space %d x %s..." %
                    (self.dimu, self.max_u))
        self.sess = tf_util.get_session()

        # running averages
        with tf.variable_scope('o_stats') as vs:
            if reuse:
                vs.reuse_variables()
            self.o_stats = Normalizer(self.dimo,
                                      self.norm_eps,
                                      self.norm_clip,
                                      sess=self.sess)
        with tf.variable_scope('g_stats') as vs:
            if reuse:
                vs.reuse_variables()
            self.g_stats = Normalizer(self.dimg,
                                      self.norm_eps,
                                      self.norm_clip,
                                      sess=self.sess)

        # mini-batch sampling.
        batch = self.staging_tf.get()
        batch_tf = OrderedDict([
            (key, batch[i]) for i, key in enumerate(self.stage_shapes.keys())
        ])
        batch_tf['r'] = tf.reshape(batch_tf['r'], [-1, 1])

        #choose only the demo buffer samples
        mask = np.concatenate(
            (np.zeros(self.batch_size - self.demo_batch_size),
             np.ones(self.demo_batch_size)),
            axis=0)

        # networks
        with tf.variable_scope('main') as vs:
            if reuse:
                vs.reuse_variables()
            self.main = self.create_actor_critic(batch_tf,
                                                 net_type='main',
                                                 **self.__dict__)
            vs.reuse_variables()
        with tf.variable_scope('target') as vs:
            if reuse:
                vs.reuse_variables()
            target_batch_tf = batch_tf.copy()
            target_batch_tf['o'] = batch_tf['o_2']
            target_batch_tf['g'] = batch_tf['g_2']
            self.target = self.create_actor_critic(target_batch_tf,
                                                   net_type='target',
                                                   **self.__dict__)
            vs.reuse_variables()
        assert len(self._vars("main")) == len(self._vars("target"))

        # loss functions
        target_Q_pi_tf = self.target.Q_pi_tf
        clip_range = (-self.clip_return,
                      0. if self.clip_pos_returns else np.inf)
        target_tf = tf.clip_by_value(
            batch_tf['r'] + self.gamma * target_Q_pi_tf, *clip_range)
        self.Q_loss_tf = tf.reduce_mean(
            tf.square(tf.stop_gradient(target_tf) - self.main.Q_tf))

        if self.bc_loss == 1 and self.q_filter == 1:  # train with demonstrations and use bc_loss and q_filter both
            maskMain = tf.reshape(
                tf.boolean_mask(self.main.Q_tf > self.main.Q_pi_tf,
                                mask), [-1]
            )  #where is the demonstrator action better than actor action according to the critic? choose those samples only
            #define the cloning loss on the actor's actions only on the samples which adhere to the above masks
            self.cloning_loss_tf = tf.reduce_sum(
                tf.square(
                    tf.boolean_mask(tf.boolean_mask((self.main.pi_tf), mask),
                                    maskMain,
                                    axis=0) -
                    tf.boolean_mask(tf.boolean_mask((batch_tf['u']), mask),
                                    maskMain,
                                    axis=0)))
            self.pi_loss_tf = -self.prm_loss_weight * tf.reduce_mean(
                self.main.Q_pi_tf
            )  #primary loss scaled by it's respective weight prm_loss_weight
            self.pi_loss_tf += self.prm_loss_weight * self.action_l2 * tf.reduce_mean(
                tf.square(self.main.pi_tf / self.max_u)
            )  #L2 loss on action values scaled by the same weight prm_loss_weight
            self.pi_loss_tf += self.aux_loss_weight * self.cloning_loss_tf  #adding the cloning loss to the actor loss as an auxilliary loss scaled by its weight aux_loss_weight

        elif self.bc_loss == 1 and self.q_filter == 0:  # train with demonstrations without q_filter
            self.cloning_loss_tf = tf.reduce_sum(
                tf.square(
                    tf.boolean_mask((self.main.pi_tf), mask) -
                    tf.boolean_mask((batch_tf['u']), mask)))
            self.pi_loss_tf = -self.prm_loss_weight * tf.reduce_mean(
                self.main.Q_pi_tf)
            self.pi_loss_tf += self.prm_loss_weight * self.action_l2 * tf.reduce_mean(
                tf.square(self.main.pi_tf / self.max_u))
            self.pi_loss_tf += self.aux_loss_weight * self.cloning_loss_tf

        else:  #If  not training with demonstrations
            self.pi_loss_tf = -tf.reduce_mean(self.main.Q_pi_tf)
            self.pi_loss_tf += self.action_l2 * tf.reduce_mean(
                tf.square(self.main.pi_tf / self.max_u))

        Q_grads_tf = tf.gradients(self.Q_loss_tf, self._vars('main/Q'))
        pi_grads_tf = tf.gradients(self.pi_loss_tf, self._vars('main/pi'))
        assert len(self._vars('main/Q')) == len(Q_grads_tf)
        assert len(self._vars('main/pi')) == len(pi_grads_tf)
        self.Q_grads_vars_tf = zip(Q_grads_tf, self._vars('main/Q'))
        self.pi_grads_vars_tf = zip(pi_grads_tf, self._vars('main/pi'))
        self.Q_grad_tf = flatten_grads(grads=Q_grads_tf,
                                       var_list=self._vars('main/Q'))
        self.pi_grad_tf = flatten_grads(grads=pi_grads_tf,
                                        var_list=self._vars('main/pi'))

        # optimizers
        self.Q_adam = MpiAdam(self._vars('main/Q'), scale_grad_by_procs=False)
        self.pi_adam = MpiAdam(self._vars('main/pi'),
                               scale_grad_by_procs=False)

        # polyak averaging
        self.main_vars = self._vars('main/Q') + self._vars('main/pi')
        self.target_vars = self._vars('target/Q') + self._vars('target/pi')
        self.stats_vars = self._global_vars('o_stats') + self._global_vars(
            'g_stats')
        self.init_target_net_op = list(
            map(lambda v: v[0].assign(v[1]),
                zip(self.target_vars, self.main_vars)))
        self.update_target_net_op = list(
            map(
                lambda v: v[0].assign(self.polyak * v[0] +
                                      (1. - self.polyak) * v[1]),
                zip(self.target_vars, self.main_vars)))

        # initialize all variables
        tf.variables_initializer(self._global_vars('')).run()
        self._sync_optimizers()
        self._init_target_net()
Exemple #7
0
    def __init__(self, policy, ob_space, ac_space, nenvs, nsteps, ent_coef,
                 q_coef, gamma, max_grad_norm, lr, rprop_alpha, rprop_epsilon,
                 total_timesteps, lrschedule, c, trust_region, alpha, delta):

        sess = get_session()
        nact = ac_space.n
        nbatch = nenvs * nsteps

        A = tf.placeholder(tf.int32, [nbatch])  # actions
        D = tf.placeholder(tf.float32, [nbatch])  # dones
        R = tf.placeholder(tf.float32, [nbatch])  # rewards, not returns
        MU = tf.placeholder(tf.float32, [nbatch, nact])  # mu's
        LR = tf.placeholder(tf.float32, [])
        eps = 1e-6

        step_ob_placeholder = tf.placeholder(dtype=ob_space.dtype,
                                             shape=(nenvs, ) + ob_space.shape)
        train_ob_placeholder = tf.placeholder(dtype=ob_space.dtype,
                                              shape=(nenvs * (nsteps + 1), ) +
                                              ob_space.shape)
        with tf.variable_scope('acer_model', reuse=tf.AUTO_REUSE):

            step_model = policy(nbatch=nenvs,
                                nsteps=1,
                                observ_placeholder=step_ob_placeholder,
                                sess=sess)
            train_model = policy(nbatch=nbatch,
                                 nsteps=nsteps,
                                 observ_placeholder=train_ob_placeholder,
                                 sess=sess)

        params = find_trainable_variables("acer_model")
        print("Params {}".format(len(params)))
        for var in params:
            print(var)

        # create polyak averaged model
        ema = tf.train.ExponentialMovingAverage(alpha)
        ema_apply_op = ema.apply(params)

        def custom_getter(getter, *args, **kwargs):
            v = ema.average(getter(*args, **kwargs))
            print(v.name)
            return v

        with tf.variable_scope("acer_model",
                               custom_getter=custom_getter,
                               reuse=True):
            polyak_model = policy(nbatch=nbatch,
                                  nsteps=nsteps,
                                  observ_placeholder=train_ob_placeholder,
                                  sess=sess)

        # Notation: (var) = batch variable, (var)s = seqeuence variable, (var)_i = variable index by action at step i

        # action probability distributions according to train_model, polyak_model and step_model
        # poilcy.pi is probability distribution parameters; to obtain distribution that sums to 1 need to take softmax
        train_model_p = tf.nn.softmax(train_model.pi)
        polyak_model_p = tf.nn.softmax(polyak_model.pi)
        step_model_p = tf.nn.softmax(step_model.pi)
        v = tf.reduce_sum(train_model_p * train_model.q,
                          axis=-1)  # shape is [nenvs * (nsteps + 1)]

        # strip off last step
        f, f_pol, q = map(lambda var: strip(var, nenvs, nsteps),
                          [train_model_p, polyak_model_p, train_model.q])
        # Get pi and q values for actions taken
        f_i = get_by_index(f, A)
        q_i = get_by_index(q, A)

        # Compute ratios for importance truncation
        rho = f / (MU + eps)
        rho_i = get_by_index(rho, A)

        # Calculate Q_retrace targets
        qret = q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma)

        # Calculate losses
        # Entropy
        # entropy = tf.reduce_mean(strip(train_model.pd.entropy(), nenvs, nsteps))
        entropy = tf.reduce_mean(cat_entropy_softmax(f))

        # Policy Graident loss, with truncated importance sampling & bias correction
        v = strip(v, nenvs, nsteps, True)
        check_shape([qret, v, rho_i, f_i], [[nenvs * nsteps]] * 4)
        check_shape([rho, f, q], [[nenvs * nsteps, nact]] * 2)

        # Truncated importance sampling
        adv = qret - v
        logf = tf.log(f_i + eps)
        gain_f = logf * tf.stop_gradient(
            adv * tf.minimum(c, rho_i))  # [nenvs * nsteps]
        loss_f = -tf.reduce_mean(gain_f)

        # Bias correction for the truncation
        adv_bc = (q - tf.reshape(v, [nenvs * nsteps, 1])
                  )  # [nenvs * nsteps, nact]
        logf_bc = tf.log(f + eps)  # / (f_old + eps)
        check_shape([adv_bc, logf_bc], [[nenvs * nsteps, nact]] * 2)
        gain_bc = tf.reduce_sum(
            logf_bc *
            tf.stop_gradient(adv_bc * tf.nn.relu(1.0 - (c / (rho + eps))) * f),
            axis=1)  #IMP: This is sum, as expectation wrt f
        loss_bc = -tf.reduce_mean(gain_bc)

        loss_policy = loss_f + loss_bc

        # Value/Q function loss, and explained variance
        check_shape([qret, q_i], [[nenvs * nsteps]] * 2)
        ev = q_explained_variance(tf.reshape(q_i, [nenvs, nsteps]),
                                  tf.reshape(qret, [nenvs, nsteps]))
        loss_q = tf.reduce_mean(tf.square(tf.stop_gradient(qret) - q_i) * 0.5)

        # Net loss
        check_shape([loss_policy, loss_q, entropy], [[]] * 3)
        loss = loss_policy + q_coef * loss_q - ent_coef * entropy

        if trust_region:
            g = tf.gradients(-(loss_policy - ent_coef * entropy) * nsteps *
                             nenvs, f)  #[nenvs * nsteps, nact]
            # k = tf.gradients(KL(f_pol || f), f)
            k = -f_pol / (
                f + eps
            )  #[nenvs * nsteps, nact] # Directly computed gradient of KL divergence wrt f
            k_dot_g = tf.reduce_sum(k * g, axis=-1)
            adj = tf.maximum(0.0, (tf.reduce_sum(k * g, axis=-1) - delta) /
                             (tf.reduce_sum(tf.square(k), axis=-1) +
                              eps))  #[nenvs * nsteps]

            # Calculate stats (before doing adjustment) for logging.
            avg_norm_k = avg_norm(k)
            avg_norm_g = avg_norm(g)
            avg_norm_k_dot_g = tf.reduce_mean(tf.abs(k_dot_g))
            avg_norm_adj = tf.reduce_mean(tf.abs(adj))

            g = g - tf.reshape(adj, [nenvs * nsteps, 1]) * k
            grads_f = -g / (
                nenvs * nsteps
            )  # These are turst region adjusted gradients wrt f ie statistics of policy pi
            grads_policy = tf.gradients(f, params, grads_f)
            grads_q = tf.gradients(loss_q * q_coef, params)
            grads = [
                gradient_add(g1, g2, param)
                for (g1, g2, param) in zip(grads_policy, grads_q, params)
            ]

            avg_norm_grads_f = avg_norm(grads_f) * (nsteps * nenvs)
            norm_grads_q = tf.global_norm(grads_q)
            norm_grads_policy = tf.global_norm(grads_policy)
        else:
            grads = tf.gradients(loss, params)

        if max_grad_norm is not None:
            grads, norm_grads = tf.clip_by_global_norm(grads, max_grad_norm)
        grads = list(zip(grads, params))
        trainer = tf.train.RMSPropOptimizer(learning_rate=LR,
                                            decay=rprop_alpha,
                                            epsilon=rprop_epsilon)
        _opt_op = trainer.apply_gradients(grads)

        # so when you call _train, you first do the gradient step, then you apply ema
        with tf.control_dependencies([_opt_op]):
            _train = tf.group(ema_apply_op)

        lr = Scheduler(v=lr, nvalues=total_timesteps, schedule=lrschedule)

        # Ops/Summaries to run, and their names for logging
        run_ops = [
            _train, loss, loss_q, entropy, loss_policy, loss_f, loss_bc, ev,
            norm_grads
        ]
        names_ops = [
            'loss', 'loss_q', 'entropy', 'loss_policy', 'loss_f', 'loss_bc',
            'explained_variance', 'norm_grads'
        ]
        if trust_region:
            run_ops = run_ops + [
                norm_grads_q, norm_grads_policy, avg_norm_grads_f, avg_norm_k,
                avg_norm_g, avg_norm_k_dot_g, avg_norm_adj
            ]
            names_ops = names_ops + [
                'norm_grads_q', 'norm_grads_policy', 'avg_norm_grads_f',
                'avg_norm_k', 'avg_norm_g', 'avg_norm_k_dot_g', 'avg_norm_adj'
            ]

        def train(obs, actions, rewards, dones, mus, states, masks, steps):
            cur_lr = lr.value_steps(steps)
            td_map = {
                train_model.X: obs,
                polyak_model.X: obs,
                A: actions,
                R: rewards,
                D: dones,
                MU: mus,
                LR: cur_lr
            }
            if states is not None:
                td_map[train_model.S] = states
                td_map[train_model.M] = masks
                td_map[polyak_model.S] = states
                td_map[polyak_model.M] = masks

            return names_ops, sess.run(run_ops, td_map)[1:]  # strip off _train

        def _step(observation, **kwargs):
            return step_model._evaluate(
                [step_model.action, step_model_p, step_model.state],
                observation, **kwargs)

        self.train = train
        self.save = functools.partial(save_variables,
                                      sess=sess,
                                      variables=params)
        self.train_model = train_model
        self.step_model = step_model
        self._step = _step
        self.step = self.step_model.step

        self.initial_state = step_model.initial_state
        tf.global_variables_initializer().run(session=sess)
Exemple #8
0
    def __init__(self,
                 *,
                 policy,
                 ob_space,
                 ac_space,
                 nbatch_act,
                 nbatch_train,
                 nsteps,
                 ent_coef,
                 vf_coef,
                 max_grad_norm,
                 name='ppo_model',
                 sess=None,
                 microbatch_size=None):
        if sess is None:
            sess = get_session()
        self.sess = sess
        self.name = name

        with tf.variable_scope(name) as scope:
            self.scope = scope
            with tf.variable_scope('models', reuse=tf.AUTO_REUSE):
                with tf.name_scope('act_model'):
                    # CREATE OUR TWO MODELS
                    # act_model that is used for sampling
                    act_model = policy(nbatch_act, 1, sess)

                with tf.name_scope('train_model'):
                    # Train model for training
                    if microbatch_size is None:
                        train_model = policy(nbatch_train, nsteps, sess)
                    else:
                        train_model = policy(microbatch_size, nsteps, sess)

            with tf.variable_scope('losses'):
                # CREATE THE PLACEHOLDERS
                self.A = A = train_model.pdtype.sample_placeholder(
                    [None], name='action')
                self.ADV = ADV = tf.placeholder(tf.float32, [None],
                                                name='advantage')
                self.RETURNS = RETURNS = tf.placeholder(tf.float32, [None],
                                                        name='reward')
                self.VALUE_PREV = VALUE_PREV = tf.placeholder(
                    tf.float32, [None], name='value_prev')
                self.OLDNEGLOGPAC = OLDNEGLOGPAC = tf.placeholder(
                    tf.float32, [None], name='negative_log_p_action_old')
                self.CLIPRANGE = CLIPRANGE = tf.placeholder(tf.float32, [],
                                                            name='clip_range')

                with tf.name_scope("neglogpac"):
                    neglogpac = train_model.pd.neglogp(A)

                with tf.name_scope("entropy"):
                    # Calculate the entropy
                    # Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
                    entropy = tf.reduce_mean(train_model.pd.entropy())
                    entropy_loss = (-ent_coef) * entropy

                with tf.name_scope("value_loss"):
                    # CALCULATE THE LOSS
                    value = train_model.value
                    value_clipped = VALUE_PREV + tf.clip_by_value(
                        value - VALUE_PREV, -CLIPRANGE, CLIPRANGE)
                    vf_losses1 = tf.squared_difference(value, RETURNS)
                    vf_losses2 = tf.squared_difference(value_clipped, RETURNS)
                    vf_loss = 0.5 * vf_coef * tf.reduce_mean(
                        tf.maximum(vf_losses1, vf_losses2))

                with tf.name_scope("policy_loss"):
                    # Calculate ratio (pi current policy / pi old policy)
                    ratio = tf.exp(OLDNEGLOGPAC - neglogpac)
                    pg_losses = -ADV * ratio
                    pg_losses2 = -ADV * tf.clip_by_value(
                        ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE)
                    pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))

                with tf.name_scope("approxkl"):
                    approxkl = .5 * tf.reduce_mean(
                        tf.squared_difference(neglogpac, OLDNEGLOGPAC))

                with tf.name_scope("clip_fraction"):
                    clipfrac = tf.reduce_mean(
                        tf.to_float(tf.greater(tf.abs(ratio - 1.0),
                                               CLIPRANGE)))

                with tf.name_scope("total_loss"):
                    loss = pg_loss + entropy_loss + vf_loss

            with tf.variable_scope('optimizer'):
                self.LR = LR = tf.placeholder(tf.float32, [],
                                              name='learning_rate')

                # UPDATE THE PARAMETERS USING LOSS
                # 1. Get the model parameters
                params = tf.trainable_variables(self.scope.name)

                # 2. Build our trainer
                if MPI is not None:
                    self.trainer = MpiAdamOptimizer(MPI.COMM_WORLD,
                                                    learning_rate=LR,
                                                    epsilon=1e-5)
                else:
                    self.trainer = tf.train.AdamOptimizer(learning_rate=LR,
                                                          epsilon=1e-5)
                # 3. Calculate the gradients
                grads_and_var = self.trainer.compute_gradients(loss, params)
                grads, var = zip(*grads_and_var)

                if max_grad_norm is not None:
                    # Clip the gradients (normalize)
                    grads, _grad_norm = tf.clip_by_global_norm(
                        grads, max_grad_norm)
                grads_and_var = list(zip(grads, var))

                self.grads = grads
                self.var = var
                self._train_op = self.trainer.apply_gradients(grads_and_var)

                self.loss_names = [
                    'policy_loss', 'value_loss', 'entropy_loss', 'approxkl',
                    'clipfrac', 'total_loss'
                ]
                self.stats_list = [
                    pg_loss, vf_loss, entropy_loss, approxkl, clipfrac, loss
                ]

                self.train_model = train_model
                self.act_model = act_model
                self.initial_state = act_model.initial_state

                self.save = functools.partial(save_variables, sess=sess)
                self.load = functools.partial(load_variables, sess=sess)

            with tf.variable_scope('initialization'):
                sess.run(
                    tf.initializers.variables(
                        tf.global_variables(self.scope.name)))
                sess.run(
                    tf.initializers.variables(
                        tf.local_variables(self.scope.name)))
                global_variables = tf.get_collection(
                    tf.GraphKeys.GLOBAL_VARIABLES, scope=self.scope.name)
                if MPI is not None:
                    sync_from_root(sess, global_variables)  # pylint: disable=E1101
def _serialize_variables():
    sess = get_session()
    variables = tf.trainable_variables()
    values = sess.run(variables)
    return {var.name: value for var, value in zip(variables, values)}
Exemple #10
0
def learn(network, env,
          seed=None,
          total_timesteps=None,
          nb_epochs=None, # with default settings, perform 1M steps total
          nb_epoch_cycles=20,
          nb_rollout_steps=100,
          reward_scale=1.0,
          render=False,
          render_eval=False,
          noise_type='adaptive-param_0.2',
          normalize_returns=False,
          normalize_observations=True,
          critic_l2_reg=1e-2,
          actor_lr=1e-4,
          critic_lr=1e-3,
          popart=False,
          gamma=0.99,
          clip_norm=None,
          nb_train_steps=50, # per epoch cycle and MPI worker,
          nb_eval_steps=100,
          batch_size=64, # per MPI worker
          tau=0.01,
          eval_env=None,
          param_noise_adaption_interval=50,
          **network_kwargs):

    set_global_seeds(seed)

    if total_timesteps is not None:
        assert nb_epochs is None
        nb_epochs = int(total_timesteps) // (nb_epoch_cycles * nb_rollout_steps)
    else:
        nb_epochs = 500

    if MPI is not None:
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        rank = 0

    nb_actions = env.action_space.shape[-1]
    assert (np.abs(env.action_space.low) == env.action_space.high).all()  # we assume symmetric actions.

    memory = Memory(limit=int(1e6), action_shape=env.action_space.shape, observation_shape=env.observation_space.shape)
    critic = Critic(network=network, **network_kwargs)
    actor = Actor(nb_actions, network=network, **network_kwargs)

    action_noise = None
    param_noise = None
    if noise_type is not None:
        for current_noise_type in noise_type.split(','):
            current_noise_type = current_noise_type.strip()
            if current_noise_type == 'none':
                pass
            elif 'adaptive-param' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                param_noise = AdaptiveParamNoiseSpec(initial_stddev=float(stddev), desired_action_stddev=float(stddev))
            elif 'normal' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                action_noise = NormalActionNoise(mu=np.zeros(nb_actions), sigma=float(stddev) * np.ones(nb_actions))
            elif 'ou' in current_noise_type:
                _, stddev = current_noise_type.split('_')
                action_noise = OrnsteinUhlenbeckActionNoise(mu=np.zeros(nb_actions), sigma=float(stddev) * np.ones(nb_actions))
            else:
                raise RuntimeError('unknown noise type "{}"'.format(current_noise_type))

    max_action = env.action_space.high
    logger.info('scaling actions by {} before executing in env'.format(max_action))

    agent = DDPG(actor, critic, memory, env.observation_space.shape, env.action_space.shape,
        gamma=gamma, tau=tau, normalize_returns=normalize_returns, normalize_observations=normalize_observations,
        batch_size=batch_size, action_noise=action_noise, param_noise=param_noise, critic_l2_reg=critic_l2_reg,
        actor_lr=actor_lr, critic_lr=critic_lr, enable_popart=popart, clip_norm=clip_norm,
        reward_scale=reward_scale)
    logger.info('Using agent with the following configuration:')
    logger.info(str(agent.__dict__.items()))

    eval_episode_rewards_history = deque(maxlen=100)
    episode_rewards_history = deque(maxlen=100)
    sess = U.get_session()
    # Prepare everything.
    agent.initialize(sess)
    sess.graph.finalize()

    agent.reset()

    obs = env.reset()
    if eval_env is not None:
        eval_obs = eval_env.reset()
    nenvs = obs.shape[0]

    episode_reward = np.zeros(nenvs, dtype = np.float32) #vector
    episode_step = np.zeros(nenvs, dtype = int) # vector
    episodes = 0 #scalar
    t = 0 # scalar

    epoch = 0



    start_time = time.time()

    epoch_episode_rewards = []
    epoch_episode_steps = []
    epoch_actions = []
    epoch_qs = []
    epoch_episodes = 0
    for epoch in range(nb_epochs):
        for cycle in range(nb_epoch_cycles):
            # Perform rollouts.
            if nenvs > 1:
                # if simulating multiple envs in parallel, impossible to reset agent at the end of the episode in each
                # of the environments, so resetting here instead
                agent.reset()
            for t_rollout in range(nb_rollout_steps):
                # Predict next action.
                action, q, _, _ = agent.step(obs, apply_noise=True, compute_Q=True)

                # Execute next action.
                if rank == 0 and render:
                    env.render()

                # max_action is of dimension A, whereas action is dimension (nenvs, A) - the multiplication gets broadcasted to the batch
                new_obs, r, done, info = env.step(max_action * action)  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])
                # note these outputs are batched from vecenv

                t += 1
                if rank == 0 and render:
                    env.render()
                episode_reward += r
                episode_step += 1

                # Book-keeping.
                epoch_actions.append(action)
                epoch_qs.append(q)
                agent.store_transition(obs, action, r, new_obs, done) #the batched data will be unrolled in memory.py's append.

                obs = new_obs

                for d in range(len(done)):
                    if done[d]:
                        # Episode done.
                        epoch_episode_rewards.append(episode_reward[d])
                        episode_rewards_history.append(episode_reward[d])
                        epoch_episode_steps.append(episode_step[d])
                        episode_reward[d] = 0.
                        episode_step[d] = 0
                        epoch_episodes += 1
                        episodes += 1
                        if nenvs == 1:
                            agent.reset()



            # Train.
            epoch_actor_losses = []
            epoch_critic_losses = []
            epoch_adaptive_distances = []
            for t_train in range(nb_train_steps):
                # Adapt param noise, if necessary.
                if memory.nb_entries >= batch_size and t_train % param_noise_adaption_interval == 0:
                    distance = agent.adapt_param_noise()
                    epoch_adaptive_distances.append(distance)

                cl, al = agent.train()
                epoch_critic_losses.append(cl)
                epoch_actor_losses.append(al)
                agent.update_target_net()

            # Evaluate.
            eval_episode_rewards = []
            eval_qs = []
            if eval_env is not None:
                nenvs_eval = eval_obs.shape[0]
                eval_episode_reward = np.zeros(nenvs_eval, dtype = np.float32)
                for t_rollout in range(nb_eval_steps):
                    eval_action, eval_q, _, _ = agent.step(eval_obs, apply_noise=False, compute_Q=True)
                    eval_obs, eval_r, eval_done, eval_info = eval_env.step(max_action * eval_action)  # scale for execution in env (as far as DDPG is concerned, every action is in [-1, 1])
                    if render_eval:
                        eval_env.render()
                    eval_episode_reward += eval_r

                    eval_qs.append(eval_q)
                    for d in range(len(eval_done)):
                        if eval_done[d]:
                            eval_episode_rewards.append(eval_episode_reward[d])
                            eval_episode_rewards_history.append(eval_episode_reward[d])
                            eval_episode_reward[d] = 0.0

        if MPI is not None:
            mpi_size = MPI.COMM_WORLD.Get_size()
        else:
            mpi_size = 1

        # Log stats.
        # XXX shouldn't call np.mean on variable length lists
        duration = time.time() - start_time
        stats = agent.get_stats()
        combined_stats = stats.copy()
        combined_stats['rollout/return'] = np.mean(epoch_episode_rewards)
        combined_stats['rollout/return_history'] = np.mean(episode_rewards_history)
        combined_stats['rollout/episode_steps'] = np.mean(epoch_episode_steps)
        combined_stats['rollout/actions_mean'] = np.mean(epoch_actions)
        combined_stats['rollout/Q_mean'] = np.mean(epoch_qs)
        combined_stats['train/loss_actor'] = np.mean(epoch_actor_losses)
        combined_stats['train/loss_critic'] = np.mean(epoch_critic_losses)
        combined_stats['train/param_noise_distance'] = np.mean(epoch_adaptive_distances)
        combined_stats['total/duration'] = duration
        combined_stats['total/steps_per_second'] = float(t) / float(duration)
        combined_stats['total/episodes'] = episodes
        combined_stats['rollout/episodes'] = epoch_episodes
        combined_stats['rollout/actions_std'] = np.std(epoch_actions)
        # Evaluation statistics.
        if eval_env is not None:
            combined_stats['eval/return'] = eval_episode_rewards
            combined_stats['eval/return_history'] = np.mean(eval_episode_rewards_history)
            combined_stats['eval/Q'] = eval_qs
            combined_stats['eval/episodes'] = len(eval_episode_rewards)
        def as_scalar(x):
            if isinstance(x, np.ndarray):
                assert x.size == 1
                return x[0]
            elif np.isscalar(x):
                return x
            else:
                raise ValueError('expected scalar, got %s'%x)

        combined_stats_sums = np.array([ np.array(x).flatten()[0] for x in combined_stats.values()])
        if MPI is not None:
            combined_stats_sums = MPI.COMM_WORLD.allreduce(combined_stats_sums)

        combined_stats = {k : v / mpi_size for (k,v) in zip(combined_stats.keys(), combined_stats_sums)}

        # Total statistics.
        combined_stats['total/epochs'] = epoch + 1
        combined_stats['total/steps'] = t

        for key in sorted(combined_stats.keys()):
            logger.record_tabular(key, combined_stats[key])

        if rank == 0:
            logger.dump_tabular()
        logger.info('')
        logdir = logger.get_dir()
        if rank == 0 and logdir:
            if hasattr(env, 'get_state'):
                with open(os.path.join(logdir, 'env_state.pkl'), 'wb') as f:
                    pickle.dump(env.get_state(), f)
            if eval_env and hasattr(eval_env, 'get_state'):
                with open(os.path.join(logdir, 'eval_env_state.pkl'), 'wb') as f:
                    pickle.dump(eval_env.get_state(), f)


    return agent
Exemple #11
0
    def __init__(self,
                 policy,
                 env,
                 nsteps,
                 ent_coef=0.01,
                 vf_coef=0.5,
                 max_grad_norm=0.5,
                 lr=7e-4,
                 alpha=0.99,
                 epsilon=1e-5,
                 total_timesteps=int(80e6),
                 lrschedule='linear'):

        sess = tf_util.get_session()
        nenvs = env.num_envs
        nbatch = nenvs * nsteps

        with tf.variable_scope('a2c_model', reuse=tf.AUTO_REUSE):
            # step_model is used for sampling
            step_model = policy(nenvs, 1, sess)

            # train_model is used to train our network
            train_model = policy(nbatch, nsteps, sess)

        A = tf.placeholder(train_model.action.dtype, train_model.action.shape)
        ADV = tf.placeholder(tf.float32, [nbatch])
        R = tf.placeholder(tf.float32, [nbatch])
        LR = tf.placeholder(tf.float32, [])

        # Calculate the loss
        # Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss

        # Policy loss
        neglogpac = train_model.pd.neglogp(A)
        # L = A(s,a) * -logpi(a|s)
        pg_loss = tf.reduce_mean(ADV * neglogpac)

        # Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
        entropy = tf.reduce_mean(train_model.pd.entropy())

        # Value loss
        vf_loss = losses.mean_squared_error(tf.squeeze(train_model.vf), R)

        loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef

        # Update parameters using loss
        # 1. Get the model parameters
        params = find_trainable_variables("a2c_model")

        # 2. Calculate the gradients
        grads = tf.gradients(loss, params)
        if max_grad_norm is not None:
            # Clip the gradients (normalize)
            grads, grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
        grads = list(zip(grads, params))
        # zip aggregate each gradient with parameters associated
        # For instance zip(ABCD, xyza) => Ax, By, Cz, Da

        # 3. Make op for one policy and value update step of A2C
        trainer = tf.train.RMSPropOptimizer(learning_rate=LR,
                                            decay=alpha,
                                            epsilon=epsilon)

        _train = trainer.apply_gradients(grads)

        lr = Scheduler(v=lr, nvalues=total_timesteps, schedule=lrschedule)

        def train(obs, states, rewards, masks, actions, values):
            # Here we calculate advantage A(s,a) = R + yV(s') - V(s)
            # rewards = R + yV(s')
            advs = rewards - values
            for step in range(len(obs)):
                cur_lr = lr.value()

            td_map = {
                train_model.X: obs,
                A: actions,
                ADV: advs,
                R: rewards,
                LR: cur_lr
            }
            if states is not None:
                td_map[train_model.S] = states
                td_map[train_model.M] = masks
            policy_loss, value_loss, policy_entropy, _ = sess.run(
                [pg_loss, vf_loss, entropy, _train], td_map)
            return policy_loss, value_loss, policy_entropy

        self.train = train
        self.train_model = train_model
        self.step_model = step_model
        self.step = step_model.step
        self.value = step_model.value
        self.initial_state = step_model.initial_state
        self.save = functools.partial(tf_util.save_variables, sess=sess)
        self.load = functools.partial(tf_util.load_variables, sess=sess)
        tf.global_variables_initializer().run(session=sess)
Exemple #12
0
def learn(
        *,
        network,
        env,
        total_timesteps,
        timesteps_per_batch=1024,  # what to train on
        max_kl=0.001,
        cg_iters=10,
        gamma=0.99,
        lam=1.0,  # advantage estimation
        seed=None,
        ent_coef=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        vf_iters=3,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        load_path=None,
        **network_kwargs):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    if MPI is not None:
        nworkers = MPI.COMM_WORLD.Get_size()
        rank = MPI.COMM_WORLD.Get_rank()
    else:
        nworkers = 1
        rank = 0

    cpus_per_worker = 1
    U.get_session(
        config=tf.ConfigProto(allow_soft_placement=True,
                              inter_op_parallelism_threads=cpus_per_worker,
                              intra_op_parallelism_threads=cpus_per_worker))

    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  #pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(get_variables("oldpi"), get_variables("pi"))
        ])

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        if MPI is not None:
            out = np.empty_like(x)
            MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
            out /= nworkers
        else:
            out = np.copy(x)

        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    if MPI is not None:
        MPI.COMM_WORLD.Bcast(th_init, root=0)

    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product,
                             g,
                             cg_iters=cg_iters,
                             verbose=rank == 0)
            assert np.isfinite(stepdir).all()
            shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)
            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(
                    np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f" %
                           (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather(
                    (thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(
                    np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches(
                    (seg["ob"], seg["tdlamret"]),
                        include_final_partial_batch=False,
                        batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        if MPI is not None:
            listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        else:
            listoflrpairs = [lrlocal]

        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()

    return pi
Exemple #13
0
    def __init__(self,
                 policy,
                 ob_space,
                 ac_space,
                 nenvs,
                 total_timesteps,
                 nprocs=32,
                 nsteps=20,
                 ent_coef=0.01,
                 vf_coef=0.5,
                 vf_fisher_coef=1.0,
                 lr=0.25,
                 max_grad_norm=0.5,
                 kfac_clip=0.001,
                 lrschedule='linear',
                 is_async=True):

        self.sess = sess = get_session()
        nbatch = nenvs * nsteps
        with tf.variable_scope('acktr_model', reuse=tf.AUTO_REUSE):
            self.model = step_model = policy(nenvs, 1, sess=sess)
            self.model2 = train_model = policy(nenvs * nsteps,
                                               nsteps,
                                               sess=sess)

        A = train_model.pdtype.sample_placeholder([None])
        ADV = tf.placeholder(tf.float32, [nbatch])
        R = tf.placeholder(tf.float32, [nbatch])
        PG_LR = tf.placeholder(tf.float32, [])
        VF_LR = tf.placeholder(tf.float32, [])

        neglogpac = train_model.pd.neglogp(A)
        self.logits = train_model.pi

        ##training loss
        pg_loss = tf.reduce_mean(ADV * neglogpac)
        entropy = tf.reduce_mean(train_model.pd.entropy())
        pg_loss = pg_loss - ent_coef * entropy
        vf_loss = tf.losses.mean_squared_error(tf.squeeze(train_model.vf), R)
        train_loss = pg_loss + vf_coef * vf_loss

        ##Fisher loss construction
        self.pg_fisher = pg_fisher_loss = -tf.reduce_mean(neglogpac)
        sample_net = train_model.vf + tf.random_normal(tf.shape(
            train_model.vf))
        self.vf_fisher = vf_fisher_loss = -vf_fisher_coef * tf.reduce_mean(
            tf.pow(train_model.vf - tf.stop_gradient(sample_net), 2))
        self.joint_fisher = joint_fisher_loss = pg_fisher_loss + vf_fisher_loss

        self.params = params = find_trainable_variables("acktr_model")

        self.grads_check = grads = tf.gradients(train_loss, params)

        with tf.device('/gpu:0'):
            self.optim = optim = kfac.KfacOptimizer(learning_rate=PG_LR, clip_kl=kfac_clip,\
                momentum=0.9, kfac_update=1, epsilon=0.01,\
                stats_decay=0.99, is_async=is_async, cold_iter=10, max_grad_norm=max_grad_norm)

            # update_stats_op = optim.compute_and_apply_stats(joint_fisher_loss, var_list=params)
            optim.compute_and_apply_stats(joint_fisher_loss, var_list=params)
            train_op, q_runner = optim.apply_gradients(list(zip(grads,
                                                                params)))
        self.q_runner = q_runner
        self.lr = Scheduler(v=lr, nvalues=total_timesteps, schedule=lrschedule)

        def train(obs, states, rewards, masks, actions, values):
            advs = rewards - values
            for step in range(len(obs)):
                cur_lr = self.lr.value()

            td_map = {
                train_model.X: obs,
                A: actions,
                ADV: advs,
                R: rewards,
                PG_LR: cur_lr,
                VF_LR: cur_lr
            }
            if states is not None:
                td_map[train_model.S] = states
                td_map[train_model.M] = masks

            policy_loss, value_loss, policy_entropy, _ = sess.run(
                [pg_loss, vf_loss, entropy, train_op], td_map)
            return policy_loss, value_loss, policy_entropy

        self.train = train
        self.save = functools.partial(save_variables, sess=sess)
        self.load = functools.partial(load_variables, sess=sess)
        self.train_model = train_model
        self.step_model = step_model
        self.step = step_model.step
        self.value = step_model.value
        self.initial_state = step_model.initial_state
        tf.global_variables_initializer().run(session=sess)
Exemple #14
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act