Exemple #1
0
def create_mlp_node(node):
    node.add_op(Identity())
    node.add_op(Dense(100, tf.nn.relu))
    node.add_op(Dense(100, tf.nn.tanh))
    node.add_op(Dense(100, tf.nn.sigmoid))
    node.add_op(Dropout(0.05))
    node.add_op(Dense(500, tf.nn.relu))
    node.add_op(Dense(500, tf.nn.tanh))
    node.add_op(Dense(500, tf.nn.sigmoid))
    node.add_op(Dropout(0.1))
    node.add_op(Dense(1000, tf.nn.relu))
    node.add_op(Dense(1000, tf.nn.tanh))
    node.add_op(Dense(1000, tf.nn.sigmoid))
    node.add_op(Dropout(0.2))
Exemple #2
0
def add_mlp_op_(node):
    node.add_op(Identity())
    node.add_op(Dense(100, tf.nn.relu))
    node.add_op(Dense(100, tf.nn.tanh))
    node.add_op(Dense(100, tf.nn.sigmoid))
    node.add_op(Dropout(0.3))
    node.add_op(Dense(500, tf.nn.relu))
    node.add_op(Dense(500, tf.nn.tanh))
    node.add_op(Dense(500, tf.nn.sigmoid))
    node.add_op(Dropout(0.4))
    node.add_op(Dense(1000, tf.nn.relu))
    node.add_op(Dense(1000, tf.nn.tanh))
    node.add_op(Dense(1000, tf.nn.sigmoid))
    node.add_op(Dropout(0.5))
Exemple #3
0
        def add_mlp_ops_to(vnode):
            # REG_L1 = 1.
            # REG_L2 = 1.

            vnode.add_op(Identity())
            vnode.add_op(Dense(100, tf.nn.relu))
            vnode.add_op(Dense(100, tf.nn.tanh))
            vnode.add_op(Dense(100, tf.nn.sigmoid))
            vnode.add_op(Dropout(0.05))
            vnode.add_op(Dense(500, tf.nn.relu))
            vnode.add_op(Dense(500, tf.nn.tanh))
            vnode.add_op(Dense(500, tf.nn.sigmoid))
            vnode.add_op(Dropout(0.1))
            vnode.add_op(Dense(1000, tf.nn.relu))
            vnode.add_op(Dense(1000, tf.nn.tanh))
            vnode.add_op(Dense(1000, tf.nn.sigmoid))
            vnode.add_op(Dropout(0.2))
Exemple #4
0
        def create_mlp_node(name):

            n = VariableNode(name)
            n.add_op(Identity())
            n.add_op(Dense(100, tf.nn.relu))
            n.add_op(Dense(100, tf.nn.tanh))
            n.add_op(Dense(100, tf.nn.sigmoid))
            n.add_op(Dropout(0.05))
            n.add_op(Dense(500, tf.nn.relu))
            n.add_op(Dense(500, tf.nn.tanh))
            n.add_op(Dense(500, tf.nn.sigmoid))
            n.add_op(Dropout(0.1))
            n.add_op(Dense(1000, tf.nn.relu))
            n.add_op(Dense(1000, tf.nn.tanh))
            n.add_op(Dense(1000, tf.nn.sigmoid))
            n.add_op(Dropout(0.2))

            return n
def create_structure(input_shape=(2, ), output_shape=(1, ), *args, **kwargs):
    struct = AutoOutputStructure(input_shape, output_shape, regression=False)

    n1 = ConstantNode(op=Conv1D(filter_size=20, num_filters=128), name='N')
    struct.connect(struct.input_nodes[0], n1)

    n2 = ConstantNode(op=Activation(activation='relu'), name='N')
    struct.connect(n1, n2)

    n3 = ConstantNode(op=MaxPooling1D(pool_size=1, padding='same'), name='N')
    struct.connect(n2, n3)

    n4 = ConstantNode(op=Conv1D(filter_size=10, num_filters=128), name='N')
    struct.connect(n3, n4)

    n5 = ConstantNode(op=Activation(activation='relu'), name='N')
    struct.connect(n4, n5)

    n6 = ConstantNode(op=MaxPooling1D(pool_size=10, padding='same'), name='N')
    struct.connect(n5, n6)

    n7 = ConstantNode(op=Flatten(), name='N')
    struct.connect(n6, n7)

    n8 = ConstantNode(op=Dense(units=200), name='N')
    struct.connect(n7, n8)

    n9 = ConstantNode(op=Activation(activation='relu'), name='N')
    struct.connect(n8, n9)

    n10 = ConstantNode(op=Dropout(rate=0.1), name='N')
    struct.connect(n9, n10)

    n11 = ConstantNode(op=Dense(units=20), name='N')
    struct.connect(n10, n11)

    n12 = ConstantNode(op=Activation(activation='relu'), name='N')
    struct.connect(n11, n12)

    n13 = ConstantNode(op=Dropout(rate=0.1), name='N')
    struct.connect(n12, n13)

    return struct
def add_dropout_op_(node):
    node.add_op(Identity())
    node.add_op(Dropout(rate=0.5))
    node.add_op(Dropout(rate=0.4))
    node.add_op(Dropout(rate=0.3))
    node.add_op(Dropout(rate=0.2))
    node.add_op(Dropout(rate=0.1))
    node.add_op(Dropout(rate=0.05))