def get_one_event(config='w.config', random_state=1, gen_params=None, **kwargs): gen_params = gen_params or dict() gen_params.setdefault('verbosity', 0) gen_input = get_generator_input('pythia', config, random_state=random_state, **gen_params) return list(cluster(generate_events(gen_input, ignore_weights=True), 1, **kwargs))[0]
def get_one_event_reco(pythia_config='w.config', pythia_random_state=1, delphes_random_state=1, gen_params=None, delphes_params=None, **kwargs): gen_params = gen_params or dict() gen_params.setdefault('verbosity', 0) delphes_params = delphes_params or dict() gen_input = get_generator_input('pythia', pythia_config, random_state=pythia_random_state, **gen_params) return list(cluster(reconstruct(generate_events(gen_input, ignore_weights=True), random_state=delphes_random_state, **delphes_params), 1, **kwargs))[0]
def test_hdf5_vs_direct_hepmc(): testfile = get_filepath('sherpa_wz.hepmc') with tempfile.NamedTemporaryFile() as tmp: with h5.File(tmp.name, 'w') as h5output: create_event_datasets(h5output, 1) h5output['events'][0] = list(generate_events(HepMCInput(testfile), 1))[0] h5input = h5.File(tmp.name, 'r') jets = list(cluster(reconstruct(h5input['events'], random_state=1)))[0] jets_direct = list(cluster(reconstruct(HepMCInput(testfile), random_state=1)))[0] assert_equal(jets.jets[0]['pT'], jets_direct.jets[0]['pT'])
def test_hdf5_vs_direct_pythia(): testfile = get_filepath('pythia_wz.config') with tempfile.NamedTemporaryFile() as tmp: with h5.File(tmp.name, 'w') as h5output: create_event_datasets(h5output, 1) h5output['events'][0] = list( generate_events( get_generator_input('pythia', testfile, verbosity=0, random_state=1), 1, ignore_weights=True))[0] h5input = h5.File(tmp.name, 'r') jets = list(cluster(reconstruct(h5input['events'], random_state=1)))[0] jets_direct = list( cluster( reconstruct( generate_events( get_generator_input('pythia', testfile, verbosity=0, random_state=1), 1, ignore_weights=True), random_state=1)))[0] assert_true(jets.jets[0]['pT'] > 0) assert_equal(jets.jets[0]['pT'], jets_direct.jets[0]['pT'])
def generate_event(renorm_fac=1., factor_fac=1., random_state=1): # generate one event gen_input = get_generator_input('pythia', 'w.config', random_state=random_state, verbosity=0, params_dict={ 'PhaseSpace:pTHatMin': 250, 'PhaseSpace:pTHatMax': 300, 'SigmaProcess:renormMultFac': renorm_fac, 'SigmaProcess:factorMultFac': factor_fac }) event = list( cluster(reconstruct(generate_events(gen_input, ignore_weights=True), random_state=1), events=1, jet_size=1.0, subjet_size=0.3, trimmed_pt_min=250, trimmed_pt_max=300, trimmed_mass_min=65, trimmed_mass_max=95))[0] edges = pixel_edges(jet_size=1.0, pixel_size=(0.1, 0.1), border_size=0) image = preprocess(event.subjets, event.trimmed_constit, edges, zoom=1., normalize=True, out_width=25) return image
def test_cluster_reconstruct_generate_length(): assert_equal(len(list(cluster(reconstruct(generate_events('w.config', ignore_weights=True, verbosity=0)), 1))), 1) assert_equal(len(list(cluster(reconstruct(generate_events('w.config', ignore_weights=True, verbosity=0)), 10))), 10) assert_equal(len(list(cluster(reconstruct(generate_events('w.config', ignore_weights=True, verbosity=0)), 100))), 100)
from deepjets.generate import generate_events for event in generate_events('w_vincia.config', 1, write_to='vincia.hepmc', shower='vincia', random_state=1, verbosity=0): pass for event, weight in generate_events('w.config', 1, write_to='dire.hepmc', shower='dire', random_state=1, verbosity=0): print weight
from deepjets.generate import generate_events, get_generator_input from deepjets.clustering import cluster from deepjets.detector import reconstruct from deepjets.preprocessing import preprocess, pixel_edges gen_input = get_generator_input('pythia', 'w.config', random_state=1, verbosity=0) edges = pixel_edges(jet_size=1.0, pixel_size=(0.1, 0.1), border_size=0) for particles in generate_events(gen_input, events=1, ignore_weights=True): print particles # numpy record array for particle_jets in cluster(generate_events(gen_input, ignore_weights=True), events=1): print particle_jets # jet struct image = preprocess(particle_jets.subjets, particle_jets.trimmed_constit, edges) for towers in reconstruct(generate_events(gen_input, ignore_weights=True), events=1, random_state=1): print towers # numpy record array for tower_jets in cluster(reconstruct(generate_events(gen_input, ignore_weights=True), random_state=1), events=1): print tower_jets # jet struct image = preprocess(tower_jets.subjets, tower_jets.trimmed_constit, edges)