def __init__(self, jdata): args = ClassArg()\ .add('a', dict, must = True) \ .add('r', dict, must = True) class_data = args.parse(jdata) self.param_a = class_data['a'] self.param_r = class_data['r'] self.descrpt_a = DescrptSeA(self.param_a) self.descrpt_r = DescrptSeR(self.param_r) assert (self.descrpt_a.get_ntypes() == self.descrpt_r.get_ntypes())
def test_model(self): jfile = 'water_se_r.json' with open(jfile) as fp: jdata = json.load (fp) run_opt = RunOptions(None) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have (jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt = None) test_data = data.get_test () numb_test = 1 descrpt = DescrptSeR(jdata['model']['descriptor']) fitting = EnerFitting(jdata['model']['fitting_net'], descrpt) model = Model(jdata['model'], descrpt, fitting) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = {'coord' : [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec' : [test_data['natoms_vec']], 'default_mesh' : [test_data['default_mesh']] } model._compute_input_stat(input_data) model.descrpt.bias_atom_e = data.compute_energy_shift() t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(global_ener_float_precision, [None], name='t_energy') t_force = tf.placeholder(global_tf_float_precision, [None], name='t_force') t_virial = tf.placeholder(global_tf_float_precision, [None], name='t_virial') t_atom_ener = tf.placeholder(global_tf_float_precision, [None], name='t_atom_ener') t_coord = tf.placeholder(global_tf_float_precision, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes+2], name='i_natoms') t_box = tf.placeholder(global_tf_float_precision, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None model_pred\ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, t_fparam, suffix = "se_r", reuse = False) energy = model_pred['energy'] force = model_pred['force'] virial = model_pred['virial'] atom_ener = model_pred['atom_ener'] feed_dict_test = {t_prop_c: test_data['prop_c'], t_energy: test_data['energy'] [:numb_test], t_force: np.reshape(test_data['force'] [:numb_test, :], [-1]), t_virial: np.reshape(test_data['virial'] [:numb_test, :], [-1]), t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), t_coord: np.reshape(test_data['coord'] [:numb_test, :], [-1]), t_box: test_data['box'] [:numb_test, :], t_type: np.reshape(test_data['type'] [:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False} sess = tf.Session() sess.run(tf.global_variables_initializer()) [e, f, v] = sess.run([energy, force, virial], feed_dict = feed_dict_test) e = e.reshape([-1]) f = f.reshape([-1]) v = v.reshape([-1]) refe = [6.152085988309423925e+01] reff = [-1.714443151616400110e-04,-1.315836609370952051e-04,-5.584120460897444674e-06,-7.197863450669731334e-05,-1.384609799994930676e-04,8.856091902774708468e-06,1.120578238869146797e-04,-7.428703645877488470e-05,9.370560731488587317e-07,-1.048347129617610465e-04,1.977876923815685781e-04,7.522050342771599598e-06,2.361772659657814205e-04,-5.774651813388292487e-05,-1.233143271630744828e-05,2.257277740226381951e-08,2.042905031476775584e-04,6.003548585097267914e-07] refv = [1.035180911513190792e-03,-1.118982949050497126e-04,-2.383287813436022850e-05,-1.118982949050497126e-04,4.362023915782403281e-04,8.119543218224559240e-06,-2.383287813436022850e-05,8.119543218224559240e-06,1.201142938802945237e-06] refe = np.reshape(refe, [-1]) reff = np.reshape(reff, [-1]) refv = np.reshape(refv, [-1]) places = 6 for ii in range(e.size) : self.assertAlmostEqual(e[ii], refe[ii], places = places) for ii in range(f.size) : self.assertAlmostEqual(f[ii], reff[ii], places = places) for ii in range(v.size) : self.assertAlmostEqual(v[ii], refv[ii], places = places)
def _init_param(self, jdata): # model config model_param = j_must_have(jdata, 'model') descrpt_param = j_must_have(model_param, 'descriptor') fitting_param = j_must_have(model_param, 'fitting_net') # descriptor descrpt_type = j_must_have(descrpt_param, 'type') if descrpt_type == 'loc_frame': self.descrpt = DescrptLocFrame(descrpt_param) elif descrpt_type == 'se_a': self.descrpt = DescrptSeA(descrpt_param) elif descrpt_type == 'se_r': self.descrpt = DescrptSeR(descrpt_param) elif descrpt_type == 'se_ar': self.descrpt = DescrptSeAR(descrpt_param) else: raise RuntimeError('unknow model type ' + descrpt_type) # fitting net try: fitting_type = fitting_param['type'] except: fitting_type = 'ener' if fitting_type == 'ener': self.fitting = EnerFitting(fitting_param, self.descrpt) elif fitting_type == 'wfc': self.fitting = WFCFitting(fitting_param, self.descrpt) elif fitting_type == 'dipole': if descrpt_type == 'se_a': self.fitting = DipoleFittingSeA(fitting_param, self.descrpt) else: raise RuntimeError( 'fitting dipole only supports descrptors: se_a') elif fitting_type == 'polar': if descrpt_type == 'loc_frame': self.fitting = PolarFittingLocFrame(fitting_param, self.descrpt) elif descrpt_type == 'se_a': self.fitting = PolarFittingSeA(fitting_param, self.descrpt) else: raise RuntimeError( 'fitting polar only supports descrptors: loc_frame and se_a' ) elif fitting_type == 'global_polar': if descrpt_type == 'se_a': self.fitting = GlobalPolarFittingSeA(fitting_param, self.descrpt) else: raise RuntimeError( 'fitting global_polar only supports descrptors: loc_frame and se_a' ) else: raise RuntimeError('unknow fitting type ' + fitting_type) # init model # infer model type by fitting_type if fitting_type == Model.model_type: self.model = Model(model_param, self.descrpt, self.fitting) elif fitting_type == 'wfc': self.model = WFCModel(model_param, self.descrpt, self.fitting) elif fitting_type == 'dipole': self.model = DipoleModel(model_param, self.descrpt, self.fitting) elif fitting_type == 'polar': self.model = PolarModel(model_param, self.descrpt, self.fitting) elif fitting_type == 'global_polar': self.model = GlobalPolarModel(model_param, self.descrpt, self.fitting) else: raise RuntimeError('get unknown fitting type when building model') # learning rate lr_param = j_must_have(jdata, 'learning_rate') try: lr_type = lr_param['type'] except: lr_type = 'exp' if lr_type == 'exp': self.lr = LearningRateExp(lr_param) else: raise RuntimeError('unknown learning_rate type ' + lr_type) # loss # infer loss type by fitting_type try: loss_param = jdata['loss'] loss_type = loss_param.get('type', 'std') except: loss_param = None loss_type = 'std' if fitting_type == 'ener': if loss_type == 'std': self.loss = EnerStdLoss( loss_param, starter_learning_rate=self.lr.start_lr()) elif loss_type == 'ener_dipole': self.loss = EnerDipoleLoss( loss_param, starter_learning_rate=self.lr.start_lr()) else: raise RuntimeError('unknow loss type') elif fitting_type == 'wfc': self.loss = TensorLoss(loss_param, model=self.model, tensor_name='wfc', tensor_size=self.model.get_out_size(), label_name='wfc') elif fitting_type == 'dipole': self.loss = TensorLoss(loss_param, model=self.model, tensor_name='dipole', tensor_size=3, label_name='dipole') elif fitting_type == 'polar': self.loss = TensorLoss(loss_param, model=self.model, tensor_name='polar', tensor_size=9, label_name='polarizability') elif fitting_type == 'global_polar': self.loss = TensorLoss(loss_param, model=self.model, tensor_name='global_polar', tensor_size=9, atomic=False, label_name='polarizability') else: raise RuntimeError( 'get unknown fitting type when building loss function') # training training_param = j_must_have(jdata, 'training') tr_args = ClassArg()\ .add('numb_test', int, default = 1)\ .add('disp_file', str, default = 'lcurve.out')\ .add('disp_freq', int, default = 100)\ .add('save_freq', int, default = 1000)\ .add('save_ckpt', str, default = 'model.ckpt')\ .add('display_in_training', bool, default = True)\ .add('timing_in_training', bool, default = True)\ .add('profiling', bool, default = False)\ .add('profiling_file',str, default = 'timeline.json')\ .add('sys_probs', list )\ .add('auto_prob_style', str, default = "prob_sys_size") tr_data = tr_args.parse(training_param) self.numb_test = tr_data['numb_test'] self.disp_file = tr_data['disp_file'] self.disp_freq = tr_data['disp_freq'] self.save_freq = tr_data['save_freq'] self.save_ckpt = tr_data['save_ckpt'] self.display_in_training = tr_data['display_in_training'] self.timing_in_training = tr_data['timing_in_training'] self.profiling = tr_data['profiling'] self.profiling_file = tr_data['profiling_file'] self.sys_probs = tr_data['sys_probs'] self.auto_prob_style = tr_data['auto_prob_style'] self.useBN = False if fitting_type == 'ener' and self.fitting.get_numb_fparam() > 0: self.numb_fparam = self.fitting.get_numb_fparam() else: self.numb_fparam = 0