def SampleText(model_file, op_file, base_output_dir, data_proto, gpu_mem, main_mem): datasets = ['train'] layernames = [ 'RNA1seq_input_layer', 'RNA2seq_input_layer', 'RNA3seq_input_layer' ] layernames_to_unclamp = [ 'RNA1seq_input_layer', 'RNA2seq_input_layer', 'RNA3seq_input_layer', 'joint_hidden1' ] method = 'gibbs' # 'gibbs' steps = 1000 inference.DoInference(model_file, op_file, base_output_dir, layernames, layernames_to_unclamp, memory='10G', method=method, steps=steps, datasets=datasets, gpu_mem=gpu_mem, main_mem=main_mem, data_proto=data_proto)
def SampleText(model_file, op_file, base_output_dir, data_proto, gpu_mem, main_mem): datasets = ['test'] layernames = ['joint_hidden', 'text_layer'] layernames_to_unclamp = ['text_layer'] method = 'mf' # 'gibbs' steps = 10 inference.DoInference(model_file, op_file, base_output_dir, layernames, layernames_to_unclamp, memory='1G', method=method, steps=steps, datasets=datasets, gpu_mem=gpu_mem, main_mem=main_mem, data_proto=data_proto)
def SampleImage(model_file, op_file, base_output_dir, data_proto, gpu_mem, main_mem): # datasets = ['train'] # datasets = ['test'] datasets = ['validation'] layernames = ['joint_hidden', 'image_hidden2'] layernames_to_unclamp = ['image_hidden2'] method = 'mf' # 'gibbs' steps = 10 inference.DoInference(model_file, op_file, base_output_dir, layernames, layernames_to_unclamp, memory='1G', method=method, steps=steps, datasets=datasets, gpu_mem=gpu_mem, main_mem=main_mem, data_proto=data_proto)