Exemple #1
0
    def __init__(self, inch, nlayer, stride, act='lrelu', acto='tanh', norm=None, conv_mode='3D'):
        super(RGBBlock, self).__init__()
        seq = []
        for i in range(nlayer):
            outch = inch#//(2**(i+1))
            seq += [('l%d'%i, ConvST3d(inch, outch, kernel_size=(3,3,3), stride=stride ,padding=(1,1,1), act=act, norm=norm, conv_mode=conv_mode))]
            inch = outch
        
        seq += [('l%d'%nlayer, ConvST3d(inch, 3, kernel_size=(1,1,1), act=acto, norm=None, conv_mode='3D'))]

        self.seq = nn.Sequential(OrderedDict(seq))
Exemple #2
0
    def __init__(self,
                 ngf=64,
                 nbf=32,
                 nblock=5,
                 nup=2,
                 conv_mode='ST',
                 act='lrelu',
                 acto=None,
                 norm=None):
        super(G4, self).__init__()

        self.convin = ConvST3d(3,
                               ngf, (3, 3, 3),
                               padding=(1, 1, 1),
                               act=None,
                               norm=None,
                               conv_mode=conv_mode)
        self.res_hall = nn.Sequential(
            OrderedDict([('rrdb%d' % (i + 1),
                          RRDB(inch=ngf,
                               nbf=nbf,
                               norm=norm,
                               act=act,
                               conv_mode=conv_mode)) for i in range(nblock)]))
        self.convbout = ConvST3d(ngf,
                                 ngf, (3, 3, 3),
                                 padding=(1, 1, 1),
                                 act=None,
                                 norm=norm,
                                 conv_mode=conv_mode)

        up = [('upconv%d' % (i + 1),
               ConvST3d(ngf,
                        ngf, (3, 3, 3),
                        padding=(1, 1, 1),
                        scale_factor=[1, 2, 2],
                        scale_mode='trilinear',
                        act=act,
                        norm=None,
                        conv_mode=conv_mode)) for i in range(nup)]
        self.up_hall = nn.Sequential(OrderedDict(up))
        self.conv1 = ConvST3d(ngf,
                              ngf, (3, 3, 3),
                              padding=(1, 1, 1),
                              act=act,
                              norm=None,
                              conv_mode=conv_mode)
        self.conv2 = ConvST3d(ngf,
                              3, (3, 3, 3),
                              padding=(1, 1, 1),
                              act=acto,
                              norm=None,
                              conv_mode=conv_mode)
Exemple #3
0
 def __init__(self,
              inch=32,
              outch=32,
              scale_factor=[1, 2, 2],
              scale_mode='trilinear',
              norm=None,
              actenc='lrelu',
              actup='lrelu',
              conv_mode='3D'):
     super(Block, self).__init__()
     self.enc = DenseBlock(inch,
                           outch,
                           res_scale=0.2,
                           kernel_size=(3, 3, 3),
                           norm=norm,
                           act=actenc,
                           conv_mode=conv_mode)
     self.up = ConvST3d(outch,
                        outch, (3, 3, 3),
                        padding=(1, 1, 1),
                        scale_factor=scale_factor,
                        scale_mode=scale_mode,
                        act=actup,
                        norm=norm,
                        conv_mode=conv_mode)
     self.dec = DenseBlock(outch,
                           outch,
                           res_scale=0.2,
                           kernel_size=(3, 3, 3),
                           norm=norm,
                           act=actup,
                           conv_mode=conv_mode)
Exemple #4
0
    def __init__(self,
                 nin,
                 nout,
                 res_scale=0.2,
                 act='lrelu',
                 norm='bn',
                 conv_mode='3D'):
        super(EncoderBlock1, self).__init__()
        #self.rrdb = RRDB(nin, nout, res_scale=0.2, kernel_size=(3,3,3), norm=None, act=act, conv_mode=conv_mode)
        #self.conv1 = ConvST3d(nin, nout, (3,3,3), stride=stride, padding=(1,1,1), act=act, norm=norm, conv_mode=conv_mode)
        kernel_size = (3, 3, 3)

        self.res_scale = res_scale
        self.RDB1 = ResidualDenseBlock(inch=nin,
                                       outch=nin,
                                       res_scale=res_scale,
                                       kernel_size=kernel_size,
                                       norm=norm,
                                       act=act,
                                       conv_mode=conv_mode)
        self.conv1 = ConvST3d(nin,
                              nout, (3, 3, 3),
                              stride=(2, 2, 2),
                              padding=(1, 1, 1),
                              act=act,
                              norm=norm,
                              conv_mode=conv_mode)
        self.RDB2 = ResidualDenseBlock(inch=nout,
                                       outch=nout,
                                       res_scale=res_scale,
                                       kernel_size=kernel_size,
                                       norm=norm,
                                       act=act,
                                       conv_mode=conv_mode)
Exemple #5
0
 def __init__(self,
              nin,
              nout,
              scale_mode='trilinear',
              scale_factor=(2, 2, 2),
              res_scale=0.2,
              act='lrelu',
              norm='bn',
              conv_mode='3D'):
     super(DecoderBlock1, self).__init__()
     self.RDB1 = ResidualDenseBlock(inch=nin,
                                    outch=nin,
                                    res_scale=res_scale,
                                    kernel_size=(3, 3, 3),
                                    norm=norm,
                                    act=act,
                                    conv_mode=conv_mode)
     self.conv1 = ConvST3d(nin,
                           nout, (3, 3, 3),
                           padding=(1, 1, 1),
                           scale_mode=scale_mode,
                           scale_factor=scale_factor,
                           act=act,
                           norm=norm,
                           conv_mode=conv_mode)
Exemple #6
0
    def __init__(self,
                 inch,
                 outch,
                 res_scale=0.2,
                 kernel_size=(3, 3, 3),
                 norm=None,
                 act='lrelu',
                 conv_mode='ST'):
        super(ResidualDenseBlock, self).__init__()
        self.res_scale = res_scale

        self.conv1 = ConvST3d(inch,
                              outch,
                              kernel_size,
                              padding=(1, 1, 1),
                              act=act,
                              norm=norm,
                              conv_mode=conv_mode)
        self.conv2 = ConvST3d(inch + outch,
                              outch,
                              kernel_size,
                              padding=(1, 1, 1),
                              act=act,
                              norm=norm,
                              conv_mode=conv_mode)
        self.conv3 = ConvST3d(inch + outch * 2,
                              outch,
                              kernel_size,
                              padding=(1, 1, 1),
                              act=act,
                              norm=norm,
                              conv_mode=conv_mode)
        self.conv4 = ConvST3d(inch + outch * 3,
                              outch,
                              kernel_size,
                              padding=(1, 1, 1),
                              act=act,
                              norm=norm,
                              conv_mode=conv_mode)
        self.conv5 = ConvST3d(inch + outch * 4,
                              inch,
                              kernel_size,
                              padding=(1, 1, 1),
                              act=None,
                              norm=norm,
                              conv_mode=conv_mode)
Exemple #7
0
    def __init__(self,
                 ndf=16,
                 nlayer=5,
                 actc='lrelu',
                 acto='sigmoid',
                 norm='spec',
                 conv_mode='3D'):
        super(D4, self).__init__()

        seq = [
            ('conv1',
             ConvST3d(3,
                      ndf, (3, 3, 3),
                      padding=(1, 1, 1),
                      stride=(1, 1, 1),
                      act=actc,
                      norm=norm,
                      conv_mode=conv_mode)),
        ]

        nin = ndf
        nout = ndf
        for i in range(nlayer - 2):
            nout = nin * (2**i)
            seq += [('conv%d' % (i + 2),
                     ConvST3d(nin,
                              nout, (3, 3, 3),
                              padding=(1, 1, 1),
                              stride=(1, 2, 2),
                              act=actc,
                              norm=norm,
                              conv_mode=conv_mode))]
            nin = nout

        seq += [('convout',
                 ConvST3d(nout,
                          1, (3, 3, 3),
                          padding=(1, 1, 1),
                          stride=(1, 2, 2),
                          act=acto,
                          norm=None,
                          conv_mode=conv_mode))]

        self.model = nn.Sequential(OrderedDict(seq))
Exemple #8
0
    def __init__(self, ndf=16, nfc=256, nframe=16, nout=16, actc='lrelu', acto='sigmoid', norm='bn', conv_mode='ST'):
        super(D3, self).__init__()
        self.nout = nout

        seq = [
            ('conv1', ConvST3d(3, ndf, (3,3,3), padding=(1,1,1), stride=(1,2,2), act=actc, norm=norm, conv_mode=conv_mode)),
            ('conv2', ConvST3d(ndf, ndf, (3,3,3), padding=(1,1,1), stride=(1,2,2), act=actc, norm=norm, conv_mode=conv_mode)),
            ('conv3', ConvST3d(ndf, ndf*2, (3,3,3), padding=(1,1,1), stride=(1,2,2), act=actc, norm=norm, conv_mode=conv_mode)),
            ('conv4', ConvST3d(ndf*2, ndf*4, (3,3,3), padding=(1,1,1), stride=(1,2,2), act=actc, norm=norm, conv_mode=conv_mode)),
            ('conv5', ConvST3d(ndf*4, ndf*8, (3,3,3), padding=(1,1,1), stride=(1,2,2), act=actc, norm=norm, conv_mode=conv_mode))
        ]

        self.nfeat = 4*4 * nframe * ndf*8
        lin = [
            ('fc1', FullyConnected(self.nfeat, nfc, act='relu')),
            ('fc2', FullyConnected(nfc, self.nout, act=acto))
        ]

        self.model = nn.Sequential(OrderedDict(seq))
        self.fc = nn.Sequential(OrderedDict(lin))
Exemple #9
0
    def __init__(self,
                 ndf=16,
                 actc='relu',
                 acto='sigmoid',
                 norm='bn',
                 conv_mode='ST'):
        super(D2, self).__init__()

        seq = [
            ('conv1',
             ConvST3d(3,
                      ndf, (3, 3, 3),
                      padding=(1, 1, 1),
                      stride=(1, 2, 2),
                      act=actc,
                      norm=norm,
                      conv_mode=conv_mode)),
            ('conv2',
             ConvST3d(ndf,
                      ndf * 2, (3, 3, 3),
                      padding=(1, 1, 1),
                      stride=(1, 2, 2),
                      act=actc,
                      norm=norm,
                      conv_mode=conv_mode)),
            ('conv3',
             ConvST3d(ndf * 2,
                      ndf * 4, (3, 3, 3),
                      padding=(1, 1, 1),
                      stride=(1, 2, 2),
                      act=actc,
                      norm=norm,
                      conv_mode=conv_mode)),
            ('conv4',
             ConvST3d(ndf * 4,
                      ndf * 8, (3, 3, 3),
                      padding=(1, 1, 1),
                      stride=(1, 2, 2),
                      act=actc,
                      norm=norm,
                      conv_mode=conv_mode)),
            ('conv5',
             ConvST3d(ndf * 8,
                      ndf * 8, (3, 3, 3),
                      padding=(1, 1, 1),
                      stride=(1, 2, 2),
                      act=actc,
                      norm=norm,
                      conv_mode=conv_mode)),
            ('conv6',
             ConvST3d(ndf * 8,
                      1, (1, 4, 4),
                      stride=(1, 4, 4),
                      act=acto,
                      conv_mode=conv_mode)),
        ]

        self.model = nn.Sequential(OrderedDict(seq))
Exemple #10
0
    def __init__(self,
                 nbf=32,
                 act='lrelu',
                 acto='tanh',
                 norm='spec',
                 conv_mode='3D'):
        super(G8, self).__init__()

        self.convin = ConvST3d(3,
                               nbf, (3, 3, 3),
                               padding=(1, 1, 1),
                               act=act,
                               norm=norm,
                               conv_mode=conv_mode)
        self.net = nn.Sequential(RRDB(nbf, nbf, act=act),
                                 #RRDB(nbf, nbf, act=act)
                                 )

        self.convout = ConvST3d(nbf,
                                3, (3, 3, 3),
                                padding=(1, 1, 1),
                                act=acto,
                                conv_mode=conv_mode)
Exemple #11
0
 def __init__(self,
              outch,
              nlayer,
              stride,
              act='lrelu',
              acto='tanh',
              norm=None,
              conv_mode='3D'):
     super(RGB2FeatProjector1, self).__init__()
     self.conv1 = ConvST3d(3,
                           outch,
                           kernel_size=(1, 1, 1),
                           act=acto,
                           norm=None,
                           conv_mode='3D')
Exemple #12
0
    def __init__(self,
                 inch,
                 outch,
                 nlayer,
                 stride=[1, 1, 1],
                 norm='spec',
                 act='lrelu',
                 conv_mode='3D'):
        super(Block, self).__init__()
        seq = []
        for _ in range(nlayer):
            seq += [
                ConvST3d(inch,
                         outch, (3, 3, 3),
                         padding=(1, 1, 1),
                         stride=stride,
                         act=act,
                         norm=norm,
                         conv_mode=conv_mode)
            ]

        self.model = nn.Sequential(*seq)
Exemple #13
0
    def __init__(self,
                 ngf=128,
                 actd='relu',
                 acto='tanh',
                 cnorm='bn',
                 unorm='bn'):
        super(G2, self).__init__()

        seq = [('conv1',
                ConvST3d(3,
                         ngf, (3, 3, 3),
                         padding=(1, 1, 1),
                         act=actd,
                         norm=cnorm)),
               ('uconv1',
                ConvST3d(ngf,
                         ngf, (3, 3, 3),
                         padding=(1, 1, 1),
                         scale_factor=[1, 2, 2],
                         scale_mode='trilinear',
                         act=actd,
                         norm=unorm)),
               ('conv2',
                ConvST3d(ngf,
                         ngf, (3, 3, 3),
                         padding=(1, 1, 1),
                         act=actd,
                         norm=cnorm)),
               ('uconv2',
                ConvST3d(ngf,
                         ngf, (3, 3, 3),
                         padding=(1, 1, 1),
                         scale_factor=[1, 2, 2],
                         scale_mode='trilinear',
                         act=actd,
                         norm=unorm)),
               ('conv3',
                ConvST3d(ngf,
                         ngf, (3, 3, 3),
                         padding=(1, 1, 1),
                         act=actd,
                         norm=cnorm)),
               ('conv4',
                ConvST3d(ngf, 3, (3, 3, 3), padding=(1, 1, 1), act=acto))]

        self.model = nn.Sequential(OrderedDict(seq))
Exemple #14
0
    def __init__(self,
                 ngf=128,
                 actd='relu',
                 acto='tanh',
                 cnorm='bn',
                 unorm='bn'):
        super(G3, self).__init__()

        self.conv1 = ConvST3d(3,
                              ngf, (3, 3, 3),
                              padding=(1, 1, 1),
                              act=actd,
                              norm=cnorm)
        self.uconv1 = ConvST3d(ngf,
                               ngf, (3, 3, 3),
                               padding=(1, 1, 1),
                               scale_factor=[1, 2, 2],
                               scale_mode='trilinear',
                               act=actd,
                               norm=unorm)
        self.conv2 = ConvST3d(ngf,
                              ngf, (3, 3, 3),
                              padding=(1, 1, 1),
                              act=actd,
                              norm=cnorm)
        self.uconv2 = ConvST3d(ngf,
                               ngf, (3, 3, 3),
                               padding=(1, 1, 1),
                               scale_factor=[1, 2, 2],
                               scale_mode='trilinear',
                               act=actd,
                               norm=unorm)
        self.conv3 = ConvST3d(ngf,
                              ngf, (3, 3, 3),
                              padding=(1, 1, 1),
                              act=actd,
                              norm=cnorm)
        self.conv4 = ConvST3d(ngf, 3, (3, 3, 3), padding=(1, 1, 1), act=acto)
Exemple #15
0
    def __init__(self,
                 ndf=16,
                 actc='lrelu',
                 acto='sigmoid',
                 norm='spec',
                 conv_mode='3D'):
        super(PD1, self).__init__()

        feat = [
            ConvST3d(3,
                     ndf, (3, 3, 3),
                     padding=(1, 1, 1),
                     stride=(1, 1, 1),
                     act=actc,
                     norm=norm,
                     conv_mode=conv_mode),
            ConvST3d(3,
                     ndf, (3, 3, 3),
                     padding=(1, 1, 1),
                     stride=(1, 1, 1),
                     act=actc,
                     norm=norm,
                     conv_mode=conv_mode),
            ConvST3d(3,
                     ndf, (3, 3, 3),
                     padding=(1, 1, 1),
                     stride=(1, 1, 1),
                     act=actc,
                     norm=norm,
                     conv_mode=conv_mode)
        ]

        blocks = [
            Block(ndf,
                  ndf,
                  2,
                  stride=[1, 2, 2],
                  norm=norm,
                  act=actc,
                  conv_mode=conv_mode),
            Block(ndf,
                  ndf,
                  1,
                  stride=[1, 2, 2],
                  norm=norm,
                  act=actc,
                  conv_mode=conv_mode),
            Block(ndf,
                  ndf,
                  1,
                  stride=[1, 2, 2],
                  norm=norm,
                  act=actc,
                  conv_mode=conv_mode)
        ]

        self.convout = ConvST3d(ndf,
                                1, (3, 3, 3),
                                padding=(1, 1, 1),
                                stride=(2, 1, 1),
                                act=acto,
                                norm=None,
                                conv_mode=conv_mode)

        self.avgpool = nn.AvgPool3d(kernel_size=[1, 2, 2], stride=[1, 2, 2])
        self.feat_proj = nn.ModuleList(feat)
        self.layers = nn.ModuleList(blocks)
Exemple #16
0
    def __init__(self,
                 ngf=32,
                 actenc='lrelu',
                 actdec='lrelu',
                 acto='tanh',
                 norm='spec',
                 conv_mode='3D'):
        super(PG1, self).__init__()

        self.convin = ConvST3d(3,
                               ngf, (3, 3, 3),
                               padding=(1, 1, 1),
                               act=actenc,
                               norm=norm,
                               conv_mode=conv_mode)

        blocks = [
            Block(inch=ngf,
                  outch=ngf,
                  scale_factor=[1, 2, 2],
                  norm=norm,
                  actenc=actenc,
                  actup=actdec,
                  conv_mode=conv_mode),
            Block(inch=ngf,
                  outch=ngf,
                  scale_factor=[1, 2, 2],
                  norm=norm,
                  actenc=actenc,
                  actup=actdec,
                  conv_mode=conv_mode),
            Block(inch=ngf,
                  outch=ngf,
                  scale_factor=[1, 2, 2],
                  norm=norm,
                  actenc=actenc,
                  actup=actdec,
                  conv_mode=conv_mode)
        ]

        proj = [
            RGBBlock(ngf,
                     2,
                     stride=(2, 1, 1),
                     act=actenc,
                     acto=acto,
                     norm=norm,
                     conv_mode=conv_mode),
            RGBBlock(ngf,
                     1,
                     stride=(2, 1, 1),
                     act=actenc,
                     acto=acto,
                     norm=norm,
                     conv_mode=conv_mode),
            RGBBlock(ngf,
                     1,
                     stride=(1, 1, 1),
                     act=actenc,
                     acto=acto,
                     norm=norm,
                     conv_mode=conv_mode)
        ]

        self.layers = nn.ModuleList(blocks)
        self.rgb_proj = nn.ModuleList(proj)
Exemple #17
0
    def __init__(self,
                 ngf=64,
                 nbf=32,
                 nblock=5,
                 nup=2,
                 attn_resblock_idx=None,
                 attn_upblock_idx=None,
                 attn_before_up=False,
                 conv_mode='3D',
                 act='lrelu',
                 acto='tanh',
                 norm='spec'):
        super(G5, self).__init__()
        self.attn_before_up = attn_before_up

        # Initial convolution
        self.convin = ConvST3d(3,
                               ngf, (3, 3, 3),
                               padding=(1, 1, 1),
                               act=None,
                               norm=norm,
                               conv_mode=conv_mode)

        # RRDB blocks
        rh = []
        for i in range(nblock):
            rh.append(('rrdb%d' % (i + 1),
                       RRDB(inch=ngf,
                            nbf=nbf,
                            norm=norm,
                            act=act,
                            conv_mode=conv_mode)))
            if attn_resblock_idx is not None and attn_resblock_idx == i:
                rh.append(('rb_attn', SelfAttention(ngf)))
        self.res_hall = nn.Sequential(OrderedDict(rh))

        # Convolution btw residual blocks and upsampling
        self.convbout = ConvST3d(ngf,
                                 ngf, (3, 3, 3),
                                 padding=(1, 1, 1),
                                 act=None,
                                 norm=norm,
                                 conv_mode=conv_mode)

        if self.attn_before_up:
            self.attn = SelfAttention(ngf)

        # Upsampling layers
        up = []
        for i in range(nup):
            up.append(('upconv%d' % (i + 1),
                       ConvST3d(ngf,
                                ngf, (3, 3, 3),
                                padding=(1, 1, 1),
                                scale_factor=[1, 2, 2],
                                scale_mode='trilinear',
                                act=act,
                                norm=norm,
                                conv_mode=conv_mode)))
            if attn_upblock_idx is not None and attn_upblock_idx == i:
                up.append(('up_attn', SelfAttention(ngf)))
        self.up_hall = nn.Sequential(OrderedDict(up))

        # Output convolutions
        self.conv1 = ConvST3d(ngf,
                              ngf, (3, 3, 3),
                              padding=(1, 1, 1),
                              act=act,
                              norm=norm,
                              conv_mode=conv_mode)
        self.conv2 = ConvST3d(ngf,
                              3, (3, 3, 3),
                              padding=(1, 1, 1),
                              act=acto,
                              norm=norm,
                              conv_mode=conv_mode)

        self.apply(init_weights)
Exemple #18
0
    def __init__(self,
                 mode,
                 scale_factor,
                 ngf=32,
                 nbf=32,
                 nblock=4,
                 actenc='lrelu',
                 actdec='lrelu',
                 acto='tanh',
                 norm='spec',
                 conv_mode='3D'):
        super(PG3, self).__init__()
        assert mode in ['3D', 'ST']
        assert scale_factor in [4, 8]

        self.convin = ConvST3d(3,
                               ngf, (3, 3, 3),
                               padding=(1, 1, 1),
                               act=None,
                               norm=None,
                               conv_mode=conv_mode)
        self.res_hall = nn.Sequential(
            OrderedDict([('rrdb%d' % (i + 1),
                          RRDB(inch=ngf,
                               nbf=nbf,
                               norm=norm,
                               act=actenc,
                               conv_mode=conv_mode)) for i in range(nblock)]))
        self.convbout = ConvST3d(ngf,
                                 ngf, (3, 3, 3),
                                 padding=(1, 1, 1),
                                 act=None,
                                 norm=norm,
                                 conv_mode=conv_mode)

        if mode == '3D':
            self.enc_dec_ratio = 1
            ups = [
                nn.Sequential(
                    ConvST3d(nbf,
                             nbf,
                             kernel_size=(3, 3, 3),
                             padding=(1, 1, 1),
                             stride=(2, 1, 1),
                             act=actdec,
                             norm=norm,
                             conv_mode=conv_mode),
                    ConvST3d(nbf,
                             nbf,
                             kernel_size=(3, 3, 3),
                             padding=(1, 1, 1),
                             stride=(2, 1, 1),
                             act=actdec,
                             norm=norm,
                             conv_mode=conv_mode),
                    UpBlock(nbf,
                            nbf,
                            kernel=(3, 3, 3),
                            padding=(1, 1, 1),
                            scale_factor=[1, 2, 2],
                            act=actdec,
                            norm=norm,
                            conv_mode=conv_mode)),
                nn.Sequential(
                    ConvST3d(nbf,
                             nbf,
                             kernel_size=(3, 3, 3),
                             padding=(1, 1, 1),
                             stride=(2, 1, 1),
                             act=actdec,
                             norm=norm,
                             conv_mode=conv_mode),
                    UpBlock(nbf,
                            nbf,
                            kernel=(3, 3, 3),
                            padding=(1, 1, 1),
                            scale_factor=[1, 2, 2],
                            act=actdec,
                            norm=norm,
                            conv_mode=conv_mode)),
                UpBlock(nbf,
                        nbf,
                        kernel=(3, 3, 3),
                        padding=(1, 1, 1),
                        scale_factor=[1, 2, 2],
                        act=actdec,
                        norm=norm,
                        conv_mode=conv_mode),
            ]

            proj = [
                RGBBlock(ngf,
                         1,
                         stride=(1, 1, 1),
                         act=actenc,
                         acto=acto,
                         norm=norm,
                         conv_mode=conv_mode),
                RGBBlock(ngf,
                         1,
                         stride=(1, 1, 1),
                         act=actenc,
                         acto=acto,
                         norm=norm,
                         conv_mode=conv_mode),
                RGBBlock(ngf,
                         1,
                         stride=(1, 1, 1),
                         act=actenc,
                         acto=acto,
                         norm=norm,
                         conv_mode=conv_mode)
            ]

            if scale_factor == 4:
                ups, proj = ups[1:], proj[1:]

        elif mode == 'ST':
            self.enc_dec_ratio = 2
            ups = [
                nn.Sequential(
                    ConvST3d(nbf,
                             nbf,
                             kernel_size=(3, 3, 3),
                             padding=(1, 1, 1),
                             stride=(2, 1, 1),
                             act=actdec,
                             norm=norm,
                             conv_mode=conv_mode),
                    ConvST3d(nbf,
                             nbf,
                             kernel_size=(3, 3, 3),
                             padding=(1, 1, 1),
                             stride=(2, 1, 1),
                             act=actdec,
                             norm=norm,
                             conv_mode=conv_mode)),
                nn.Sequential(
                    ConvST3d(nbf,
                             nbf,
                             kernel_size=(3, 3, 3),
                             padding=(1, 1, 1),
                             stride=(2, 1, 1),
                             act=actdec,
                             norm=norm,
                             conv_mode=conv_mode),
                    ConvST3d(nbf,
                             nbf,
                             kernel_size=(3, 3, 3),
                             padding=(1, 1, 1),
                             stride=(2, 1, 1),
                             act=actdec,
                             norm=norm,
                             conv_mode=conv_mode),
                    UpBlock(nbf,
                            nbf,
                            kernel=(3, 3, 3),
                            padding=(1, 1, 1),
                            scale_factor=[1, 2, 2],
                            act=actdec,
                            norm=norm,
                            conv_mode=conv_mode)),
                nn.Sequential(
                    ConvST3d(nbf,
                             nbf,
                             kernel_size=(3, 3, 3),
                             padding=(1, 1, 1),
                             stride=(2, 1, 1),
                             act=actdec,
                             norm=norm,
                             conv_mode=conv_mode)),
                nn.Sequential(
                    ConvST3d(nbf,
                             nbf,
                             kernel_size=(3, 3, 3),
                             padding=(1, 1, 1),
                             stride=(2, 1, 1),
                             act=actdec,
                             norm=norm,
                             conv_mode=conv_mode),
                    UpBlock(nbf,
                            nbf,
                            kernel=(3, 3, 3),
                            padding=(1, 1, 1),
                            scale_factor=[1, 2, 2],
                            act=actdec,
                            norm=norm,
                            conv_mode=conv_mode)),
                ConvST3d(nbf,
                         nbf,
                         kernel_size=(3, 3, 3),
                         padding=(1, 1, 1),
                         stride=(1, 1, 1),
                         act=actdec,
                         norm=norm,
                         conv_mode=conv_mode),
                UpBlock(nbf,
                        nbf,
                        kernel=(3, 3, 3),
                        padding=(1, 1, 1),
                        scale_factor=[1, 2, 2],
                        act=actdec,
                        norm=norm,
                        conv_mode=conv_mode)
            ]

            proj = [
                RGBBlock(ngf,
                         1,
                         stride=(1, 1, 1),
                         act=actenc,
                         acto=acto,
                         norm=norm,
                         conv_mode=conv_mode),
                RGBBlock(ngf,
                         1,
                         stride=(1, 1, 1),
                         act=actenc,
                         acto=acto,
                         norm=norm,
                         conv_mode=conv_mode),
                RGBBlock(ngf,
                         1,
                         stride=(1, 1, 1),
                         act=actenc,
                         acto=acto,
                         norm=norm,
                         conv_mode=conv_mode),
                RGBBlock(ngf,
                         1,
                         stride=(1, 1, 1),
                         act=actenc,
                         acto=acto,
                         norm=norm,
                         conv_mode=conv_mode),
                RGBBlock(ngf,
                         1,
                         stride=(1, 1, 1),
                         act=actenc,
                         acto=acto,
                         norm=norm,
                         conv_mode=conv_mode),
                RGBBlock(ngf,
                         1,
                         stride=(1, 1, 1),
                         act=actenc,
                         acto=acto,
                         norm=norm,
                         conv_mode=conv_mode)
            ]

            if scale_factor == 4:
                ups, proj = ups[2:], proj[2:]

        self.up_layers = nn.ModuleList(ups)
        self.rgb_proj = nn.ModuleList(proj)
Exemple #19
0
 def __init__(self, nin, nout, kernel, scale_factor, padding=(0,0,0), stride=(1,1,1), act='lrelu', norm='spec', conv_mode='3D'):
     super(UpBlock, self).__init__()
     self.c1 = ConvST3d(nin, nout, kernel, padding=padding, act=act, norm=norm, conv_mode=conv_mode)
     self.c2 = ConvST3d(nin, nout, kernel, padding=padding, scale_factor=scale_factor, stride=stride, scale_mode='trilinear', act=act, norm=norm, conv_mode=conv_mode)
     self.c3 = ConvST3d(nin, nout, kernel, padding=padding, act=act, norm=norm, conv_mode=conv_mode)
Exemple #20
0
    def __init__(self, mode, scale_factor, ngf=32, nbf=32, actenc='lrelu', actdec='lrelu', acto='tanh', norm='spec', conv_mode='3D'):
        super(LOCPG2, self).__init__()
        assert mode in ['3D', 'ST']
        assert scale_factor in [4 , 8]
        
        self.convin = ConvST3d(3, ngf, (3,3,3), padding=(1,1,1), act=None, norm=None, conv_mode=conv_mode)

        blocks = [
            RRDB(inch=ngf, nbf=nbf, norm=norm, act=actenc, conv_mode=conv_mode),
            RRDB(inch=ngf, nbf=nbf, norm=norm, act=actenc, conv_mode=conv_mode),
            RRDB(inch=ngf, nbf=nbf, norm=norm, act=actenc, conv_mode=conv_mode),
        ]
        if scale_factor == 4:
            blocks = blocks[1:]

        if mode == '3D':
            self.enc_dec_ratio = 1
            ups = [
                nn.Sequential(
                    ConvST3d(nbf, nbf, kernel_size=(3,3,3), padding=(1,1,1), stride=(2,1,1), act=actdec, norm=norm, conv_mode=conv_mode),
                    ConvST3d(nbf, nbf, kernel_size=(3,3,3), padding=(1,1,1), stride=(2,1,1), act=actdec, norm=norm, conv_mode=conv_mode),
                    UpBlock(nbf, nbf, kernel=(3,3,3), padding=(1,1,1), scale_factor=[1,2,2], act=actdec, norm=norm, conv_mode=conv_mode)
                ),
                nn.Sequential(
                    ConvST3d(nbf, nbf, kernel_size=(3,3,3), padding=(1,1,1), stride=(2,1,1), act=actdec, norm=norm, conv_mode=conv_mode),
                    UpBlock(nbf, nbf, kernel=(3,3,3), padding=(1,1,1), scale_factor=[1,2,2], act=actdec, norm=norm, conv_mode=conv_mode)
                ),
                UpBlock(nbf, nbf, kernel=(3,3,3), padding=(1,1,1), scale_factor=[1,2,2], act=actdec, norm=norm, conv_mode=conv_mode),
            ]

            proj = [
                RGBBlock(ngf, 1, stride=(1,1,1), act=actenc, acto=acto, norm=norm, conv_mode=conv_mode),
                RGBBlock(ngf, 1, stride=(1,1,1), act=actenc, acto=acto, norm=norm, conv_mode=conv_mode),
                RGBBlock(ngf, 1, stride=(1,1,1), act=actenc, acto=acto, norm=norm, conv_mode=conv_mode)
            ]

            if scale_factor == 4:
                ups, proj = ups[1:], proj[1:]

        elif mode == 'ST':
            self.enc_dec_ratio = 2
            ups = [
                nn.Sequential(
                    ConvST3d(nbf, nbf, kernel_size=(3,3,3), padding=(1,1,1), stride=(2,1,1), act=actdec, norm=norm, conv_mode=conv_mode),
                    ConvST3d(nbf, nbf, kernel_size=(3,3,3), padding=(1,1,1), stride=(2,1,1), act=actdec, norm=norm, conv_mode=conv_mode)
                ),
                nn.Sequential(
                    ConvST3d(nbf, nbf, kernel_size=(3,3,3), padding=(1,1,1), stride=(2,1,1), act=actdec, norm=norm, conv_mode=conv_mode),
                    ConvST3d(nbf, nbf, kernel_size=(3,3,3), padding=(1,1,1), stride=(2,1,1), act=actdec, norm=norm, conv_mode=conv_mode),
                    UpBlock(nbf, nbf, kernel=(3,3,3), padding=(1,1,1), scale_factor=[1,2,2], act=actdec, norm=norm, conv_mode=conv_mode)
                ),
                nn.Sequential(
                    ConvST3d(nbf, nbf, kernel_size=(3,3,3), padding=(1,1,1), stride=(2,1,1), act=actdec, norm=norm, conv_mode=conv_mode)
                ),
                nn.Sequential(
                    ConvST3d(nbf, nbf, kernel_size=(3,3,3), padding=(1,1,1), stride=(2,1,1), act=actdec, norm=norm, conv_mode=conv_mode),
                    UpBlock(nbf, nbf, kernel=(3,3,3), padding=(1,1,1), scale_factor=[1,2,2], act=actdec, norm=norm, conv_mode=conv_mode)
                ),
                ConvST3d(nbf, nbf, kernel_size=(3,3,3), padding=(1,1,1), stride=(1,1,1), act=actdec, norm=norm, conv_mode=conv_mode),
                UpBlock(nbf, nbf, kernel=(3,3,3), padding=(1,1,1), scale_factor=[1,2,2], act=actdec, norm=norm, conv_mode=conv_mode)
            ]

            proj = [
                RGBBlock(ngf, 1, stride=(1,1,1), act=actenc, acto=acto, norm=norm, conv_mode=conv_mode),
                RGBBlock(ngf, 1, stride=(1,1,1), act=actenc, acto=acto, norm=norm, conv_mode=conv_mode),
                RGBBlock(ngf, 1, stride=(1,1,1), act=actenc, acto=acto, norm=norm, conv_mode=conv_mode),
                RGBBlock(ngf, 1, stride=(1,1,1), act=actenc, acto=acto, norm=norm, conv_mode=conv_mode),
                RGBBlock(ngf, 1, stride=(1,1,1), act=actenc, acto=acto, norm=norm, conv_mode=conv_mode),
                RGBBlock(ngf, 1, stride=(1,1,1), act=actenc, acto=acto, norm=norm, conv_mode=conv_mode)
            ]

            if scale_factor == 4:
                ups, proj = ups[2:], proj[2:]


        self.res_hall = nn.ModuleList(blocks)
        self.up_layers = nn.ModuleList(ups)
        self.rgb_proj = nn.ModuleList(proj)

        if scale_factor == 8:
            self.saliency_dec = nn.Sequential(
                ConvST3d(nbf, nbf//2, (3,3,3), padding=(1,1,1), scale_mode='trilinear', scale_factor=(1,2,2), act=actdec, norm='bn', conv_mode=conv_mode),
                ConvST3d(nbf//2, nbf//4, (3,3,3), padding=(1,1,1), scale_mode='trilinear', scale_factor=(1,2,2), act=actdec, norm='bn', conv_mode=conv_mode),
                ConvST3d(nbf//4, 1, (3,3,3), padding=(1,1,1), scale_mode='trilinear', scale_factor=(1,2,2), act='sigmoid', norm=None, conv_mode=conv_mode)
            )
        elif scale_factor == 4:
            self.saliency_dec = nn.Sequential(
                ConvST3d(nbf, nbf//4, (3,3,3), padding=(1,1,1), scale_mode='trilinear', scale_factor=(1,2,2), act=actdec, norm='bn', conv_mode=conv_mode),
                ConvST3d(nbf//4, 1, (3,3,3), padding=(1,1,1), scale_mode='trilinear', scale_factor=(1,2,2), act='sigmoid', norm=None, conv_mode=conv_mode)
            )
Exemple #21
0
    def __init__(self, ngf=16, actc='relu', actd='relu', acto='tanh'):
        super(G1, self).__init__()

        seq = [('convin',
                ConvST3d(3, ngf, (5, 5, 5), padding=(2, 2, 2), act=actc)),
               ('d1_uconv1',
                ConvST3d(ngf,
                         ngf, (3, 3, 3),
                         padding=(1, 1, 1),
                         scale_factor=[2, 2, 2],
                         scale_mode='trilinear',
                         act=actd)),
               ('d1_conv1',
                ConvST3d(ngf, ngf, (3, 3, 3), padding=(1, 1, 1), act=actd)),
               ('d1_uconv2',
                ConvST3d(ngf,
                         ngf * 2, (3, 3, 3),
                         padding=(1, 1, 1),
                         scale_factor=[2, 2, 2],
                         scale_mode='trilinear',
                         act=actd)),
               ('d1_conv2',
                ConvST3d(ngf * 2,
                         ngf * 2, (3, 3, 3),
                         padding=(1, 1, 1),
                         act=actd)),
               ('e1_conv1',
                ConvST3d(ngf * 2,
                         ngf * 2, (3, 3, 3),
                         padding=(1, 1, 1),
                         stride=(2, 1, 1),
                         act=actc)),
               ('e1_conv2',
                ConvST3d(ngf * 2,
                         ngf, (3, 3, 3),
                         padding=(1, 1, 1),
                         stride=(2, 2, 2),
                         act=actc)),
               ('e1_conv3',
                ConvST3d(ngf,
                         int(ngf / 2), (3, 3, 3),
                         padding=(1, 1, 1),
                         stride=(2, 2, 2),
                         act=actc)),
               ('d2_uconv1',
                ConvST3d(int(ngf / 2),
                         ngf, (3, 3, 3),
                         padding=(1, 1, 1),
                         scale_factor=[1, 2, 2],
                         scale_mode='trilinear',
                         act=actd)),
               ('d2_conv1',
                ConvST3d(ngf, ngf, (3, 3, 3), padding=(1, 1, 1), act=actd)),
               ('d2_uconv2',
                ConvST3d(ngf,
                         ngf * 2, (3, 3, 3),
                         padding=(1, 1, 1),
                         scale_factor=[2, 2, 2],
                         scale_mode='trilinear',
                         act=actd)),
               ('d2_conv2',
                ConvST3d(ngf * 2,
                         ngf * 2, (3, 3, 3),
                         padding=(1, 1, 1),
                         act=actd)),
               ('convout',
                ConvST3d(ngf * 2, 3, (3, 3, 3), padding=(1, 1, 1), act=acto))]

        self.model = nn.Sequential(OrderedDict(seq))
Exemple #22
0
    def __init__(self,
                 nch=32,
                 actenc='lrelu',
                 actdec='lrelu',
                 acto='tanh',
                 norm='spec',
                 conv_mode='3D'):
        super(LOCPG5, self).__init__()

        self.encoder = nn.Sequential(*[
            RGB2FeatProjector1(nch,
                               1,
                               stride=(1, 1, 1),
                               act=actenc,
                               acto=actenc,
                               norm=norm,
                               conv_mode=conv_mode),
            EncoderBlock1(nch, 2 * nch),
            EncoderBlock1(2 * nch, 4 * nch),
            EncoderBlock1(4 * nch, 8 * nch),
        ])

        self.decoder_blocks = nn.ModuleList([
            DecoderBlock1(8 * nch, 4 * nch),  # 0
            DecoderBlock1(4 * nch, 2 * nch),  # 1
            DecoderBlock1(2 * nch, nch)  # 2
        ])

        self.feat2rgb = nn.ModuleList([
            Feat2RGBProjector1(4 * nch,
                               1,
                               stride=(1, 1, 1),
                               act=actenc,
                               acto=acto,
                               norm=norm,
                               conv_mode=conv_mode),
            Feat2RGBProjector1(2 * nch,
                               1,
                               stride=(1, 1, 1),
                               act=actenc,
                               acto=acto,
                               norm=norm,
                               conv_mode=conv_mode),
            Feat2RGBProjector1(nch,
                               1,
                               stride=(1, 1, 1),
                               act=actenc,
                               acto=acto,
                               norm=norm,
                               conv_mode=conv_mode)
        ])

        self.saliency_dec = nn.Sequential(
            ConvST3d(8 * nch,
                     2 * nch, (3, 3, 3),
                     padding=(1, 1, 1),
                     scale_mode='trilinear',
                     scale_factor=(2, 2, 2),
                     act=actdec,
                     norm='bn',
                     conv_mode=conv_mode),
            ConvST3d(2 * nch,
                     nch, (3, 3, 3),
                     padding=(1, 1, 1),
                     scale_mode='trilinear',
                     scale_factor=(2, 2, 2),
                     act=actdec,
                     norm='bn',
                     conv_mode=conv_mode),
            ConvST3d(nch,
                     1, (3, 3, 3),
                     padding=(1, 1, 1),
                     scale_mode='trilinear',
                     scale_factor=(2, 2, 2),
                     act='sigmoid',
                     norm=None,
                     conv_mode=conv_mode))