Exemple #1
0
 def _build_cudnn_rnn(self, units, n_hidden_list, cell_type, intra_layer_dropout, mask):
     sequence_lengths = tf.to_int32(tf.reduce_sum(mask, axis=1))
     for n, n_hidden in enumerate(n_hidden_list):
         with tf.variable_scope(cell_type.upper() + '_' + str(n)):
             if cell_type.lower() == 'lstm':
                 units, _ = cudnn_bi_lstm(units, n_hidden, sequence_lengths)
             elif cell_type.lower() == 'gru':
                 units, _ = cudnn_bi_gru(units, n_hidden, sequence_lengths)
             else:
                 raise RuntimeError('Wrong cell type "{}"! Only "gru" and "lstm"!'.format(cell_type))
             units = tf.concat(units, -1)
             if intra_layer_dropout and n != len(n_hidden_list) - 1:
                 units = variational_dropout(units, self._dropout_ph)
         return units
Exemple #2
0
    def _init_graph(self):
        self._init_placeholders()

        self.word_emb = tf.get_variable("word_emb",
                                        initializer=tf.constant(
                                            self.init_word_emb,
                                            dtype=tf.float32),
                                        trainable=False)
        self.char_emb = tf.get_variable("char_emb",
                                        initializer=tf.constant(
                                            self.init_char_emb,
                                            dtype=tf.float32),
                                        trainable=self.opt['train_char_emb'])

        self.c_mask = tf.cast(self.c_ph, tf.bool)
        self.q_mask = tf.cast(self.q_ph, tf.bool)
        self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1)
        self.q_len = tf.reduce_sum(tf.cast(self.q_mask, tf.int32), axis=1)

        bs = tf.shape(self.c_ph)[0]
        self.c_maxlen = tf.reduce_max(self.c_len)
        self.q_maxlen = tf.reduce_max(self.q_len)
        self.c = tf.slice(self.c_ph, [0, 0], [bs, self.c_maxlen])
        self.q = tf.slice(self.q_ph, [0, 0], [bs, self.q_maxlen])
        self.c_mask = tf.slice(self.c_mask, [0, 0], [bs, self.c_maxlen])
        self.q_mask = tf.slice(self.q_mask, [0, 0], [bs, self.q_maxlen])
        self.cc = tf.slice(self.cc_ph, [0, 0, 0],
                           [bs, self.c_maxlen, self.char_limit])
        self.qc = tf.slice(self.qc_ph, [0, 0, 0],
                           [bs, self.q_maxlen, self.char_limit])
        self.cc_len = tf.reshape(
            tf.reduce_sum(tf.cast(tf.cast(self.cc, tf.bool), tf.int32),
                          axis=2), [-1])
        self.qc_len = tf.reshape(
            tf.reduce_sum(tf.cast(tf.cast(self.qc, tf.bool), tf.int32),
                          axis=2), [-1])
        self.y1 = tf.one_hot(self.y1_ph, depth=self.context_limit)
        self.y2 = tf.one_hot(self.y2_ph, depth=self.context_limit)
        self.y1 = tf.slice(self.y1, [0, 0], [bs, self.c_maxlen])
        self.y2 = tf.slice(self.y2, [0, 0], [bs, self.c_maxlen])

        with tf.variable_scope("emb"):
            with tf.variable_scope("char"):
                cc_emb = tf.reshape(
                    tf.nn.embedding_lookup(self.char_emb, self.cc),
                    [bs * self.c_maxlen, self.char_limit, self.char_emb_dim])
                qc_emb = tf.reshape(
                    tf.nn.embedding_lookup(self.char_emb, self.qc),
                    [bs * self.q_maxlen, self.char_limit, self.char_emb_dim])

                cc_emb = variational_dropout(cc_emb,
                                             keep_prob=self.keep_prob_ph)
                qc_emb = variational_dropout(qc_emb,
                                             keep_prob=self.keep_prob_ph)

                _, (state_fw,
                    state_bw) = cudnn_bi_gru(cc_emb,
                                             self.char_hidden_size,
                                             seq_lengths=self.cc_len,
                                             trainable_initial_states=True)
                cc_emb = tf.concat([state_fw, state_bw], axis=1)

                _, (state_fw,
                    state_bw) = cudnn_bi_gru(qc_emb,
                                             self.char_hidden_size,
                                             seq_lengths=self.qc_len,
                                             trainable_initial_states=True,
                                             reuse=True)
                qc_emb = tf.concat([state_fw, state_bw], axis=1)

                cc_emb = tf.reshape(
                    cc_emb, [bs, self.c_maxlen, 2 * self.char_hidden_size])
                qc_emb = tf.reshape(
                    qc_emb, [bs, self.q_maxlen, 2 * self.char_hidden_size])

            with tf.name_scope("word"):
                c_emb = tf.nn.embedding_lookup(self.word_emb, self.c)
                q_emb = tf.nn.embedding_lookup(self.word_emb, self.q)

            c_emb = tf.concat([c_emb, cc_emb], axis=2)
            q_emb = tf.concat([q_emb, qc_emb], axis=2)

        with tf.variable_scope("encoding"):
            rnn = CudnnGRU(num_layers=3,
                           num_units=self.hidden_size,
                           batch_size=bs,
                           input_size=c_emb.get_shape().as_list()[-1],
                           keep_prob=self.keep_prob_ph)
            c = rnn(c_emb, seq_len=self.c_len)
            q = rnn(q_emb, seq_len=self.q_len)

        with tf.variable_scope("attention"):
            qc_att = dot_attention(c,
                                   q,
                                   mask=self.q_mask,
                                   att_size=self.attention_hidden_size,
                                   keep_prob=self.keep_prob_ph)
            rnn = CudnnGRU(num_layers=1,
                           num_units=self.hidden_size,
                           batch_size=bs,
                           input_size=qc_att.get_shape().as_list()[-1],
                           keep_prob=self.keep_prob_ph)
            att = rnn(qc_att, seq_len=self.c_len)

        with tf.variable_scope("match"):
            self_att = dot_attention(att,
                                     att,
                                     mask=self.c_mask,
                                     att_size=self.attention_hidden_size,
                                     keep_prob=self.keep_prob_ph)
            rnn = CudnnGRU(num_layers=1,
                           num_units=self.hidden_size,
                           batch_size=bs,
                           input_size=self_att.get_shape().as_list()[-1],
                           keep_prob=self.keep_prob_ph)
            match = rnn(self_att, seq_len=self.c_len)

        with tf.variable_scope("pointer"):
            init = simple_attention(q,
                                    self.hidden_size,
                                    mask=self.q_mask,
                                    keep_prob=self.keep_prob_ph)
            pointer = PtrNet(cell_size=init.get_shape().as_list()[-1],
                             keep_prob=self.keep_prob_ph)
            logits1, logits2 = pointer(init, match, self.hidden_size,
                                       self.c_mask)

        with tf.variable_scope("predict"):
            outer = tf.matmul(tf.expand_dims(tf.nn.softmax(logits1), axis=2),
                              tf.expand_dims(tf.nn.softmax(logits2), axis=1))
            outer = tf.matrix_band_part(
                outer, 0, tf.cast(tf.minimum(15, self.c_maxlen), tf.int64))
            self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
            self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
            loss_1 = tf.nn.softmax_cross_entropy_with_logits(logits=logits1,
                                                             labels=self.y1)
            loss_2 = tf.nn.softmax_cross_entropy_with_logits(logits=logits2,
                                                             labels=self.y2)
            self.loss = tf.reduce_mean(loss_1 + loss_2)

        if self.weight_decay < 1.0:
            self.var_ema = tf.train.ExponentialMovingAverage(self.weight_decay)
            ema_op = self.var_ema.apply(tf.trainable_variables())
            with tf.control_dependencies([ema_op]):
                self.loss = tf.identity(self.loss)

                self.shadow_vars = []
                self.global_vars = []
                for var in tf.global_variables():
                    v = self.var_ema.average(var)
                    if v:
                        self.shadow_vars.append(v)
                        self.global_vars.append(var)
                self.assign_vars = []
                for g, v in zip(self.global_vars, self.shadow_vars):
                    self.assign_vars.append(tf.assign(g, v))
Exemple #3
0
    def _init_graph(self):
        self._init_placeholders()

        self.word_emb = tf.get_variable("word_emb",
                                        initializer=tf.constant(
                                            self.init_word_emb,
                                            dtype=tf.float32),
                                        trainable=False)
        self.char_emb = tf.get_variable("char_emb",
                                        initializer=tf.constant(
                                            self.init_char_emb,
                                            dtype=tf.float32),
                                        trainable=self.train_char_emb)

        self.c_mask = tf.cast(self.c_ph, tf.bool)
        self.q_mask = tf.cast(self.q_ph, tf.bool)
        self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1)
        self.q_len = tf.reduce_sum(tf.cast(self.q_mask, tf.int32), axis=1)

        bs = tf.shape(self.c_ph)[0]
        self.c_maxlen = tf.reduce_max(self.c_len)
        self.q_maxlen = tf.reduce_max(self.q_len)
        self.c = tf.slice(self.c_ph, [0, 0], [bs, self.c_maxlen])
        self.q = tf.slice(self.q_ph, [0, 0], [bs, self.q_maxlen])
        self.c_mask = tf.slice(self.c_mask, [0, 0], [bs, self.c_maxlen])
        self.q_mask = tf.slice(self.q_mask, [0, 0], [bs, self.q_maxlen])
        self.cc = tf.slice(self.cc_ph, [0, 0, 0],
                           [bs, self.c_maxlen, self.char_limit])
        self.qc = tf.slice(self.qc_ph, [0, 0, 0],
                           [bs, self.q_maxlen, self.char_limit])
        self.cc_len = tf.reshape(
            tf.reduce_sum(tf.cast(tf.cast(self.cc, tf.bool), tf.int32),
                          axis=2), [-1])
        self.qc_len = tf.reshape(
            tf.reduce_sum(tf.cast(tf.cast(self.qc, tf.bool), tf.int32),
                          axis=2), [-1])
        # to remove char sequences with len equal zero (padded tokens)
        self.cc_len = tf.maximum(tf.ones_like(self.cc_len), self.cc_len)
        self.qc_len = tf.maximum(tf.ones_like(self.qc_len), self.qc_len)
        self.y1 = tf.one_hot(self.y1_ph, depth=self.context_limit)
        self.y2 = tf.one_hot(self.y2_ph, depth=self.context_limit)
        self.y1 = tf.slice(self.y1, [0, 0], [bs, self.c_maxlen])
        self.y2 = tf.slice(self.y2, [0, 0], [bs, self.c_maxlen])

        if self.noans_token:
            # we use additional 'no answer' token to allow model not to answer on question
            # later we will add 'no answer' token as first token in context question-aware representation
            self.y1 = tf.one_hot(self.y1_ph, depth=self.context_limit + 1)
            self.y2 = tf.one_hot(self.y2_ph, depth=self.context_limit + 1)
            self.y1 = tf.slice(self.y1, [0, 0], [bs, self.c_maxlen + 1])
            self.y2 = tf.slice(self.y2, [0, 0], [bs, self.c_maxlen + 1])

        with tf.variable_scope("emb"):
            with tf.variable_scope("char"):
                cc_emb = tf.reshape(
                    tf.nn.embedding_lookup(self.char_emb, self.cc),
                    [bs * self.c_maxlen, self.char_limit, self.char_emb_dim])
                qc_emb = tf.reshape(
                    tf.nn.embedding_lookup(self.char_emb, self.qc),
                    [bs * self.q_maxlen, self.char_limit, self.char_emb_dim])

                cc_emb = variational_dropout(cc_emb,
                                             keep_prob=self.keep_prob_ph)
                qc_emb = variational_dropout(qc_emb,
                                             keep_prob=self.keep_prob_ph)

                _, (state_fw,
                    state_bw) = cudnn_bi_gru(cc_emb,
                                             self.char_hidden_size,
                                             seq_lengths=self.cc_len,
                                             trainable_initial_states=True)
                cc_emb = tf.concat([state_fw, state_bw], axis=1)

                _, (state_fw,
                    state_bw) = cudnn_bi_gru(qc_emb,
                                             self.char_hidden_size,
                                             seq_lengths=self.qc_len,
                                             trainable_initial_states=True,
                                             reuse=True)
                qc_emb = tf.concat([state_fw, state_bw], axis=1)

                cc_emb = tf.reshape(
                    cc_emb, [bs, self.c_maxlen, 2 * self.char_hidden_size])
                qc_emb = tf.reshape(
                    qc_emb, [bs, self.q_maxlen, 2 * self.char_hidden_size])

            with tf.name_scope("word"):
                c_emb = tf.nn.embedding_lookup(self.word_emb, self.c)
                q_emb = tf.nn.embedding_lookup(self.word_emb, self.q)

            c_emb = tf.concat([c_emb, cc_emb], axis=2)
            q_emb = tf.concat([q_emb, qc_emb], axis=2)

        with tf.variable_scope("encoding"):
            rnn = self.GRU(num_layers=3,
                           num_units=self.hidden_size,
                           batch_size=bs,
                           input_size=c_emb.get_shape().as_list()[-1],
                           keep_prob=self.keep_prob_ph)
            c = rnn(c_emb, seq_len=self.c_len)
            q = rnn(q_emb, seq_len=self.q_len)

        with tf.variable_scope("attention"):
            qc_att = dot_attention(c,
                                   q,
                                   mask=self.q_mask,
                                   att_size=self.attention_hidden_size,
                                   keep_prob=self.keep_prob_ph)
            rnn = self.GRU(num_layers=1,
                           num_units=self.hidden_size,
                           batch_size=bs,
                           input_size=qc_att.get_shape().as_list()[-1],
                           keep_prob=self.keep_prob_ph)
            att = rnn(qc_att, seq_len=self.c_len)

        with tf.variable_scope("match"):
            self_att = dot_attention(att,
                                     att,
                                     mask=self.c_mask,
                                     att_size=self.attention_hidden_size,
                                     keep_prob=self.keep_prob_ph)
            rnn = self.GRU(num_layers=1,
                           num_units=self.hidden_size,
                           batch_size=bs,
                           input_size=self_att.get_shape().as_list()[-1],
                           keep_prob=self.keep_prob_ph)
            match = rnn(self_att, seq_len=self.c_len)

        with tf.variable_scope("pointer"):
            init = simple_attention(q,
                                    self.hidden_size,
                                    mask=self.q_mask,
                                    keep_prob=self.keep_prob_ph)
            pointer = PtrNet(cell_size=init.get_shape().as_list()[-1],
                             keep_prob=self.keep_prob_ph)
            if self.noans_token:
                noans_token = tf.Variable(
                    tf.random_uniform((match.get_shape().as_list()[-1], ),
                                      -0.1, 0.1), tf.float32)
                noans_token = tf.nn.dropout(noans_token,
                                            keep_prob=self.keep_prob_ph)
                noans_token = tf.expand_dims(tf.tile(
                    tf.expand_dims(noans_token, axis=0), [bs, 1]),
                                             axis=1)
                match = tf.concat([noans_token, match], axis=1)
                self.c_mask = tf.concat(
                    [tf.ones(shape=(bs, 1), dtype=tf.bool), self.c_mask],
                    axis=1)
            logits1, logits2 = pointer(init, match, self.hidden_size,
                                       self.c_mask)

        with tf.variable_scope("predict"):
            max_ans_length = tf.cast(tf.minimum(15, self.c_maxlen), tf.int64)
            outer_logits = tf.exp(
                tf.expand_dims(logits1, axis=2) +
                tf.expand_dims(logits2, axis=1))
            outer_logits = tf.matrix_band_part(outer_logits, 0, max_ans_length)
            outer = tf.matmul(tf.expand_dims(tf.nn.softmax(logits1), axis=2),
                              tf.expand_dims(tf.nn.softmax(logits2), axis=1))
            outer = tf.matrix_band_part(outer, 0, max_ans_length)
            self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
            self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
            self.yp_logits = tf.reduce_max(tf.reduce_max(outer_logits, axis=2),
                                           axis=1)
            if self.noans_token:
                self.yp_score = 1 - tf.nn.softmax(
                    logits1)[:, 0] * tf.nn.softmax(logits2)[:, 0]
            loss_1 = tf.nn.softmax_cross_entropy_with_logits(logits=logits1,
                                                             labels=self.y1)
            loss_2 = tf.nn.softmax_cross_entropy_with_logits(logits=logits2,
                                                             labels=self.y2)
            self.loss = tf.reduce_mean(loss_1 + loss_2)
Exemple #4
0
    def _init_graph(self):
        self._init_placeholders()

        self.word_emb = tf.get_variable("word_emb", initializer=tf.constant(self.init_word_emb, dtype=tf.float32),
                                        trainable=False)
        self.char_emb = tf.get_variable("char_emb", initializer=tf.constant(self.init_char_emb, dtype=tf.float32),
                                        trainable=self.train_char_emb)

        self.c_mask = tf.cast(self.c_ph, tf.bool)
        self.q_mask = tf.cast(self.q_ph, tf.bool)
        self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1)
        self.q_len = tf.reduce_sum(tf.cast(self.q_mask, tf.int32), axis=1)

        bs = tf.shape(self.c_ph)[0]
        self.c_maxlen = tf.reduce_max(self.c_len)
        self.q_maxlen = tf.reduce_max(self.q_len)
        self.c = tf.slice(self.c_ph, [0, 0], [bs, self.c_maxlen])
        self.q = tf.slice(self.q_ph, [0, 0], [bs, self.q_maxlen])
        self.c_mask = tf.slice(self.c_mask, [0, 0], [bs, self.c_maxlen])
        self.q_mask = tf.slice(self.q_mask, [0, 0], [bs, self.q_maxlen])
        self.cc = tf.slice(self.cc_ph, [0, 0, 0], [bs, self.c_maxlen, self.char_limit])
        self.qc = tf.slice(self.qc_ph, [0, 0, 0], [bs, self.q_maxlen, self.char_limit])
        self.cc_len = tf.reshape(tf.reduce_sum(tf.cast(tf.cast(self.cc, tf.bool), tf.int32), axis=2), [-1])
        self.qc_len = tf.reshape(tf.reduce_sum(tf.cast(tf.cast(self.qc, tf.bool), tf.int32), axis=2), [-1])
        # to remove char sequences with len equal zero (padded tokens)
        self.cc_len = tf.maximum(tf.ones_like(self.cc_len), self.cc_len)
        self.qc_len = tf.maximum(tf.ones_like(self.qc_len), self.qc_len)
        self.y1 = tf.one_hot(self.y1_ph, depth=self.context_limit)
        self.y2 = tf.one_hot(self.y2_ph, depth=self.context_limit)
        self.y1 = tf.slice(self.y1, [0, 0], [bs, self.c_maxlen])
        self.y2 = tf.slice(self.y2, [0, 0], [bs, self.c_maxlen])

        if self.noans_token:
            # we use additional 'no answer' token to allow model not to answer on question
            # later we will add 'no answer' token as first token in context question-aware representation
            self.y1 = tf.one_hot(self.y1_ph, depth=self.context_limit + 1)
            self.y2 = tf.one_hot(self.y2_ph, depth=self.context_limit + 1)
            self.y1 = tf.slice(self.y1, [0, 0], [bs, self.c_maxlen + 1])
            self.y2 = tf.slice(self.y2, [0, 0], [bs, self.c_maxlen + 1])

        with tf.variable_scope("emb"):
            with tf.variable_scope("char"):
                cc_emb = tf.reshape(tf.nn.embedding_lookup(self.char_emb, self.cc),
                                    [bs * self.c_maxlen, self.char_limit, self.char_emb_dim])
                qc_emb = tf.reshape(tf.nn.embedding_lookup(self.char_emb, self.qc),
                                    [bs * self.q_maxlen, self.char_limit, self.char_emb_dim])

                cc_emb = variational_dropout(cc_emb, keep_prob=self.keep_prob_ph)
                qc_emb = variational_dropout(qc_emb, keep_prob=self.keep_prob_ph)

                _, (state_fw, state_bw) = cudnn_bi_gru(cc_emb, self.char_hidden_size, seq_lengths=self.cc_len,
                                                       trainable_initial_states=True)
                cc_emb = tf.concat([state_fw, state_bw], axis=1)

                _, (state_fw, state_bw) = cudnn_bi_gru(qc_emb, self.char_hidden_size, seq_lengths=self.qc_len,
                                                       trainable_initial_states=True,
                                                       reuse=True)
                qc_emb = tf.concat([state_fw, state_bw], axis=1)

                cc_emb = tf.reshape(cc_emb, [bs, self.c_maxlen, 2 * self.char_hidden_size])
                qc_emb = tf.reshape(qc_emb, [bs, self.q_maxlen, 2 * self.char_hidden_size])

            with tf.name_scope("word"):
                c_emb = tf.nn.embedding_lookup(self.word_emb, self.c)
                q_emb = tf.nn.embedding_lookup(self.word_emb, self.q)

            c_emb = tf.concat([c_emb, cc_emb], axis=2)
            q_emb = tf.concat([q_emb, qc_emb], axis=2)

        with tf.variable_scope("encoding"):
            rnn = self.GRU(num_layers=3, num_units=self.hidden_size, batch_size=bs,
                           input_size=c_emb.get_shape().as_list()[-1],
                           keep_prob=self.keep_prob_ph)
            c = rnn(c_emb, seq_len=self.c_len)
            q = rnn(q_emb, seq_len=self.q_len)

        with tf.variable_scope("attention"):
            qc_att = dot_attention(c, q, mask=self.q_mask, att_size=self.attention_hidden_size,
                                   keep_prob=self.keep_prob_ph)
            rnn = self.GRU(num_layers=1, num_units=self.hidden_size, batch_size=bs,
                           input_size=qc_att.get_shape().as_list()[-1], keep_prob=self.keep_prob_ph)
            att = rnn(qc_att, seq_len=self.c_len)

        with tf.variable_scope("match"):
            self_att = dot_attention(att, att, mask=self.c_mask, att_size=self.attention_hidden_size,
                                     keep_prob=self.keep_prob_ph)
            rnn = self.GRU(num_layers=1, num_units=self.hidden_size, batch_size=bs,
                           input_size=self_att.get_shape().as_list()[-1], keep_prob=self.keep_prob_ph)
            match = rnn(self_att, seq_len=self.c_len)

        with tf.variable_scope("pointer"):
            init = simple_attention(q, self.hidden_size, mask=self.q_mask, keep_prob=self.keep_prob_ph)
            pointer = PtrNet(cell_size=init.get_shape().as_list()[-1], keep_prob=self.keep_prob_ph)
            if self.noans_token:
                noans_token = tf.Variable(tf.random_uniform((match.get_shape().as_list()[-1],), -0.1, 0.1), tf.float32)
                noans_token = tf.nn.dropout(noans_token, keep_prob=self.keep_prob_ph)
                noans_token = tf.expand_dims(tf.tile(tf.expand_dims(noans_token, axis=0), [bs, 1]), axis=1)
                match = tf.concat([noans_token, match], axis=1)
                self.c_mask = tf.concat([tf.ones(shape=(bs, 1), dtype=tf.bool), self.c_mask], axis=1)
            logits1, logits2 = pointer(init, match, self.hidden_size, self.c_mask)

        with tf.variable_scope("predict"):
            max_ans_length = tf.cast(tf.minimum(15, self.c_maxlen), tf.int64)
            outer_logits = tf.exp(tf.expand_dims(logits1, axis=2) + tf.expand_dims(logits2, axis=1))
            outer_logits = tf.matrix_band_part(outer_logits, 0, max_ans_length)
            outer = tf.matmul(tf.expand_dims(tf.nn.softmax(logits1), axis=2),
                              tf.expand_dims(tf.nn.softmax(logits2), axis=1))
            outer = tf.matrix_band_part(outer, 0, max_ans_length)
            self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
            self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
            self.yp_logits = tf.reduce_max(tf.reduce_max(outer_logits, axis=2), axis=1)
            if self.noans_token:
                self.yp_score = 1 - tf.nn.softmax(logits1)[:, 0] * tf.nn.softmax(logits2)[:, 0]
            loss_1 = tf.nn.softmax_cross_entropy_with_logits(logits=logits1, labels=self.y1)
            loss_2 = tf.nn.softmax_cross_entropy_with_logits(logits=logits2, labels=self.y2)
            self.loss = tf.reduce_mean(loss_1 + loss_2)
Exemple #5
0
    def _init_graph(self):
        self._init_placeholders()

        self.word_emb = tf.get_variable("word_emb", initializer=tf.constant(self.init_word_emb, dtype=tf.float32),
                                        trainable=False)
        self.char_emb = tf.get_variable("char_emb", initializer=tf.constant(self.init_char_emb, dtype=tf.float32),
                                        trainable=self.train_char_emb)

        self.c_mask = tf.cast(self.c_ph, tf.bool)
        self.q_mask = tf.cast(self.q_ph, tf.bool)
        self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1)
        self.q_len = tf.reduce_sum(tf.cast(self.q_mask, tf.int32), axis=1)

        bs = tf.shape(self.c_ph)[0]
        self.c_maxlen = tf.reduce_max(self.c_len)
        self.q_maxlen = tf.reduce_max(self.q_len)
        self.c = tf.slice(self.c_ph, [0, 0], [bs, self.c_maxlen])
        self.q = tf.slice(self.q_ph, [0, 0], [bs, self.q_maxlen])
        self.c_mask = tf.slice(self.c_mask, [0, 0], [bs, self.c_maxlen])
        self.q_mask = tf.slice(self.q_mask, [0, 0], [bs, self.q_maxlen])
        self.cc = tf.slice(self.cc_ph, [0, 0, 0], [bs, self.c_maxlen, self.char_limit])
        self.qc = tf.slice(self.qc_ph, [0, 0, 0], [bs, self.q_maxlen, self.char_limit])
        self.cc_len = tf.reshape(tf.reduce_sum(tf.cast(tf.cast(self.cc, tf.bool), tf.int32), axis=2), [-1])
        self.qc_len = tf.reshape(tf.reduce_sum(tf.cast(tf.cast(self.qc, tf.bool), tf.int32), axis=2), [-1])
        self.y1 = tf.one_hot(self.y1_ph, depth=self.context_limit)
        self.y2 = tf.one_hot(self.y2_ph, depth=self.context_limit)
        self.y1 = tf.slice(self.y1, [0, 0], [bs, self.c_maxlen])
        self.y2 = tf.slice(self.y2, [0, 0], [bs, self.c_maxlen])

        with tf.variable_scope("emb"):
            with tf.variable_scope("char"):
                cc_emb = tf.reshape(tf.nn.embedding_lookup(self.char_emb, self.cc),
                                    [bs * self.c_maxlen, self.char_limit, self.char_emb_dim])
                qc_emb = tf.reshape(tf.nn.embedding_lookup(self.char_emb, self.qc),
                                    [bs * self.q_maxlen, self.char_limit, self.char_emb_dim])

                cc_emb = variational_dropout(cc_emb, keep_prob=self.keep_prob_ph)
                qc_emb = variational_dropout(qc_emb, keep_prob=self.keep_prob_ph)

                _, (state_fw, state_bw) = cudnn_bi_gru(cc_emb, self.char_hidden_size, seq_lengths=self.cc_len,
                                                       trainable_initial_states=True)
                cc_emb = tf.concat([state_fw, state_bw], axis=1)

                _, (state_fw, state_bw) = cudnn_bi_gru(qc_emb, self.char_hidden_size, seq_lengths=self.qc_len,
                                                       trainable_initial_states=True,
                                                       reuse=True)
                qc_emb = tf.concat([state_fw, state_bw], axis=1)

                cc_emb = tf.reshape(cc_emb, [bs, self.c_maxlen, 2 * self.char_hidden_size])
                qc_emb = tf.reshape(qc_emb, [bs, self.q_maxlen, 2 * self.char_hidden_size])

            with tf.name_scope("word"):
                c_emb = tf.nn.embedding_lookup(self.word_emb, self.c)
                q_emb = tf.nn.embedding_lookup(self.word_emb, self.q)

            c_emb = tf.concat([c_emb, cc_emb], axis=2)
            q_emb = tf.concat([q_emb, qc_emb], axis=2)

        with tf.variable_scope("encoding"):
            rnn = self.GRU(num_layers=3, num_units=self.hidden_size, batch_size=bs,
                           input_size=c_emb.get_shape().as_list()[-1],
                           keep_prob=self.keep_prob_ph)
            c = rnn(c_emb, seq_len=self.c_len)
            q = rnn(q_emb, seq_len=self.q_len)

        with tf.variable_scope("attention"):
            qc_att = dot_attention(c, q, mask=self.q_mask, att_size=self.attention_hidden_size,
                                   keep_prob=self.keep_prob_ph)
            rnn = self.GRU(num_layers=1, num_units=self.hidden_size, batch_size=bs,
                           input_size=qc_att.get_shape().as_list()[-1], keep_prob=self.keep_prob_ph)
            att = rnn(qc_att, seq_len=self.c_len)

        with tf.variable_scope("match"):
            self_att = dot_attention(att, att, mask=self.c_mask, att_size=self.attention_hidden_size,
                                     keep_prob=self.keep_prob_ph)
            rnn = self.GRU(num_layers=1, num_units=self.hidden_size, batch_size=bs,
                           input_size=self_att.get_shape().as_list()[-1], keep_prob=self.keep_prob_ph)
            match = rnn(self_att, seq_len=self.c_len)

        with tf.variable_scope("pointer"):
            init = simple_attention(q, self.hidden_size, mask=self.q_mask, keep_prob=self.keep_prob_ph)
            pointer = PtrNet(cell_size=init.get_shape().as_list()[-1], keep_prob=self.keep_prob_ph)
            logits1, logits2 = pointer(init, match, self.hidden_size, self.c_mask)

        with tf.variable_scope("predict"):
            outer_logits = tf.exp(tf.expand_dims(logits1, axis=2) + tf.expand_dims(logits2, axis=1))
            outer = tf.matmul(tf.expand_dims(tf.nn.softmax(logits1), axis=2),
                              tf.expand_dims(tf.nn.softmax(logits2), axis=1))
            outer = tf.matrix_band_part(outer, 0, tf.cast(tf.minimum(15, self.c_maxlen), tf.int64))
            self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
            self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
            self.yp_logits = tf.reduce_max(tf.reduce_max(outer_logits, axis=2), axis=1)
            loss_1 = tf.nn.softmax_cross_entropy_with_logits(logits=logits1, labels=self.y1)
            loss_2 = tf.nn.softmax_cross_entropy_with_logits(logits=logits2, labels=self.y2)
            self.loss = tf.reduce_mean(loss_1 + loss_2)

        if self.weight_decay < 1.0:
            self.var_ema = tf.train.ExponentialMovingAverage(self.weight_decay)
            ema_op = self.var_ema.apply(tf.trainable_variables())
            with tf.control_dependencies([ema_op]):
                self.loss = tf.identity(self.loss)

                self.shadow_vars = []
                self.global_vars = []
                for var in tf.global_variables():
                    v = self.var_ema.average(var)
                    if v:
                        self.shadow_vars.append(v)
                        self.global_vars.append(var)
                self.assign_vars = []
                for g, v in zip(self.global_vars, self.shadow_vars):
                    self.assign_vars.append(tf.assign(g, v))