def test_meansquarederror(): confs = itertools.product(batch_sizes, n_ins) for batch_size, n_in in confs: print('MeanSquaredError: batch_size=%i, n_in=%i' % (batch_size, n_in)) x_shape = (batch_size, n_in) x = np.random.normal(size=x_shape) y = np.random.normal(size=x_shape) loss = dp.MeanSquaredError() loss._setup(x_shape) assert loss.loss(ca.array(x), ca.array(y)).shape == x_shape[:1] check_grad(loss, x, y)
weight_decay=0.004, monitor=True), ), dp.Activation('relu'), dp.Pool(**pool_kwargs), dp.Convolutional( n_filters=64, filter_shape=(5, 5), border_mode='same', weights=dp.Parameter(dp.NormalFiller(sigma=0.01), weight_decay=0.004, monitor=True), ), dp.Activation('relu'), dp.Pool(**pool_kwargs), dp.Flatten(), dp.FullyConnected( n_output=64, weights=dp.Parameter(dp.NormalFiller(sigma=0.1), weight_decay=0.004, monitor=True), ), dp.Activation('relu'), dp.FullyConnected( n_output=6, weights=dp.Parameter(dp.NormalFiller(sigma=0.1), weight_decay=0.004, monitor=True), ), dp.MeanSquaredError(), ], )