help="What degree of interpolation to use when selecting labels", default=1, type=int, required=False) args = parser.parse_args() argdict = vars(args) spline_degree = args.spline_degree with open(os.path.join(args.db_path, "f1_dataset_config.yaml"), "r") as f: dset_config = yaml.load(f, Loader=yaml.SafeLoader) use_json = dset_config["use_json"] image_folder = os.path.join(args.db_path, dset_config["images_folder"]) udp_folder = os.path.join(args.db_path, dset_config["udp_folder"]) telemetry_folder = os.path.join(udp_folder, "car_telemetry_packets") session_folder = os.path.join(udp_folder, "session_packets") session_packets = getAllSessionPackets(session_folder, use_json) spectating_flags = [ bool(packet.udp_packet.m_isSpectating) for packet in session_packets ] spectating = False for flag in spectating_flags: spectating = spectating or flag car_indices = [ int(packet.udp_packet.m_spectatorCarIndex) for packet in session_packets ] print(spectating_flags) print(car_indices) print(spectating) car_indices_set = set(car_indices) car_index = 0
shutil.rmtree(output_dir) time.sleep(1.0) if os.path.isdir(output_dir): s = 'asdf' while not ((s == 'y') or (s == 'n')): s = input("Directory %s already exists. overwrite it? (y\\n)" % (output_dir, )) if s == 'y': shutil.rmtree(output_dir) time.sleep(1.0) else: print("Thanks for playing!") exit(0) os.makedirs(output_dir) session_tags = sorted(getAllSessionPackets(session_folder, use_json), key=udpPacketKey) trackId = session_tags[0].udp_packet.m_trackId trackName = trackNames[trackId] searchFile = trackName + "_racingline.json" racelineFile = searchForFile(searchFile, os.getenv("F1_TRACK_DIRS").split(os.pathsep)) if racelineFile is None: raise ValueError("Could not find trackfile %s" % searchFile) racelinetimes_, racelinedists_, raceline_ = loadRaceline(racelineFile) Nsamp = int(15E3) racelinedists = np.linspace(racelinedists_[0].item(), racelinedists_[-1].item(), Nsamp) racelinetimes = np.linspace(racelinetimes_[0].item(), racelinetimes_[-1].item(), Nsamp) rlfit_t = racelinetimes_.numpy()