def main():
    parser = argparse.ArgumentParser(description='Run DQN on Atari Breakout')
    parser.add_argument('--env', default='Breakout-v0', help='Atari env name')
    parser.add_argument('-o',
                        '--output',
                        default='atari-v0',
                        help='Directory to save data to')
    parser.add_argument('--seed', default=0, type=int, help='Random seed')
    parser.add_argument('--mode', choices=['train', 'test'], default='test')
    parser.add_argument('--network',
                        choices=['deep', 'linear'],
                        default='deep')
    parser.add_argument('--method',
                        choices=['dqn', 'double', 'dueling'],
                        default='dqn')
    parser.add_argument('--monitor', type=bool, default=True)
    parser.add_argument('--iter', type=int, default=2400000)
    parser.add_argument('--test_policy',
                        choices=['Greedy', 'GreedyEpsilon'],
                        default='GreedyEpsilon')

    args = parser.parse_args()
    args.seed = np.random.randint(0, 1000000, 1)[0]
    args.weights = 'models/dqn_{}_weights_{}_{}_{}.h5f'.format(
        args.env, args.method, args.network, args.iter)
    args.monitor_path = 'tmp/dqn_{}_weights_{}_{}_{}_{}'.format(
        args.env, args.method, args.network, args.iter, args.test_policy)
    if args.mode == 'train':
        args.monitor = False

    env = gym.make(args.env)
    if args.monitor:
        env = wrappers.Monitor(env, args.monitor_path)
    np.random.seed(args.seed)
    env.seed(args.seed)

    args.gamma = 0.99
    args.learning_rate = 0.0001
    args.epsilon = 0.05
    args.num_iterations = 5000000
    args.batch_size = 32

    args.window_length = 4
    args.num_burn_in = 50000
    args.target_update_freq = 10000
    args.log_interval = 10000
    args.model_checkpoint_interval = 10000
    args.train_freq = 4

    args.num_actions = env.action_space.n
    args.input_shape = (84, 84)
    args.memory_max_size = 1000000

    args.output = get_output_folder(args.output, args.env)

    args.suffix = args.method + '_' + args.network
    if (args.method == 'dqn'):
        args.enable_double_dqn = False
        args.enable_dueling_network = False
    elif (args.method == 'double'):
        args.enable_double_dqn = True
        args.enable_dueling_network = False
    elif (args.method == 'dueling'):
        args.enable_double_dqn = False
        args.enable_dueling_network = True
    else:
        print('Attention! Method Worng!!!')

    if args.test_policy == 'Greedy':
        test_policy = GreedyPolicy()
    elif args.test_policy == 'GreedyEpsilon':
        test_policy = GreedyEpsilonPolicy(args.epsilon)

    print(args)

    K.tensorflow_backend.set_session(get_session())
    model = create_model(args.window_length, args.input_shape,
                         args.num_actions, args.network)

    # we create our preprocessor, the Ataripreprocessor will only process current frame the agent is seeing. And the sequence
    # preprocessor will construct the state by concatenating 3 previous frames from HistoryPreprocessor and current processed frame
    Processor = {}
    Processor['Atari'] = AtariPreprocessor(args.input_shape)
    Processor['History'] = HistoryPreprocessor(args.window_length)
    ProcessorSequence = PreprocessorSequence(Processor)  # construct 84x84x4

    # we create our memory for saving all experience collected during training with window length 4
    memory = ReplayMemory(max_size=args.memory_max_size,
                          input_shape=args.input_shape,
                          window_length=args.window_length)

    # we use linear decay greedy epsilon policy and tune the epsilon from 1 to 0.1 during the first 100w iterations and then keep using
    # epsilon with 0.1 to further train the network
    policy = LinearDecayGreedyEpsilonPolicy(GreedyEpsilonPolicy(args.epsilon),
                                            attr_name='eps',
                                            start_value=1,
                                            end_value=0.1,
                                            num_steps=1000000)

    # we construct our agent and use 0.99 as our discounted factor, 32 as our batch_size. We update our model for each 4 iterations. But during first
    # 50000 iterations, we only collect data to the memory and don't update our model.
    dqn = DQNAgent(q_network=model,
                   policy=policy,
                   memory=memory,
                   num_actions=args.num_actions,
                   test_policy=test_policy,
                   preprocessor=ProcessorSequence,
                   gamma=args.gamma,
                   target_update_freq=args.target_update_freq,
                   num_burn_in=args.num_burn_in,
                   train_freq=args.train_freq,
                   batch_size=args.batch_size,
                   enable_double_dqn=args.enable_double_dqn,
                   enable_dueling_network=args.enable_dueling_network)

    adam = Adam(lr=args.learning_rate)
    dqn.compile(optimizer=adam)

    if args.mode == 'train':
        weights_filename = 'dqn_{}_weights_{}.h5f'.format(
            args.env, args.suffix)
        checkpoint_weights_filename = 'dqn_' + args.env + '_weights_' + args.suffix + '_{step}.h5f'
        log_filename = 'dqn_{}_log_{}.json'.format(args.env, args.suffix)
        log_dir = '../tensorboard_{}_log_{}'.format(args.env, args.suffix)
        callbacks = [
            ModelIntervalCheckpoint(checkpoint_weights_filename,
                                    interval=args.model_checkpoint_interval)
        ]
        callbacks += [FileLogger(log_filename, interval=100)]
        callbacks += [
            TensorboardStepVisualization(log_dir=log_dir,
                                         histogram_freq=1,
                                         write_graph=True,
                                         write_images=True)
        ]

        # start training
        # we don't apply action repetition explicitly since the game will randomly skip frame itself
        dqn.fit(env,
                callbacks=callbacks,
                verbose=1,
                num_iterations=args.num_iterations,
                action_repetition=1,
                log_interval=args.log_interval,
                visualize=True)

        dqn.save_weights(weights_filename, overwrite=True)
        dqn.evaluate(env,
                     num_episodes=10,
                     visualize=True,
                     num_burn_in=5,
                     action_repetition=1)
    elif args.mode == 'test':
        weights_filename = 'dqn_{}_weights_{}.h5f'.format(
            args.env, args.suffix)
        if args.weights:
            weights_filename = args.weights
        dqn.load_weights(weights_filename)
        dqn.evaluate(env,
                     num_episodes=250,
                     visualize=True,
                     num_burn_in=5,
                     action_repetition=1)

        # we upload our result to openai gym
        if args.monitor:
            env.close()
            gym.upload(args.monitor_path, api_key='sk_J62obX9PQg2ExrM6H9rvzQ')
Exemple #2
0
def main():  # noqa: D103
    parser = argparse.ArgumentParser(description='Run DQN on Atari Breakout')
    #parser.add_argument('--env', default='Breakout-v0', help='Atari env name')
    parser.add_argument('--env',
                        default='SpaceInvaders-v0',
                        help='Atari env name')
    parser.add_argument('--output',
                        default='results',
                        help='Directory to save data to')
    parser.add_argument('-l',
                        '--isLinear',
                        default=0,
                        type=int,
                        choices=range(0, 2),
                        help='1: use linear model; 0: use deep model')
    parser.add_argument(
        '-m',
        '--modelType',
        default='q',
        choices=['q', 'double', 'dueling'],
        help=
        'q: q learning; double: double q learning; dueling: dueling q learning'
    )
    parser.add_argument(
        '-s',
        '--simple',
        default=0,
        type=int,
        choices=range(0, 2),
        help=
        '1: without replay or target fixing ; 0: use replay and target fixing')
    parser.add_argument('--seed', default=0, type=int, help='Random seed')

    args = parser.parse_args()

    #args.input_shape = tuple(args.input_shape)
    if not os.path.exists(args.output):
        os.makedirs(args.output)
    model_name = ('linear_' if args.isLinear else 'deep_') + args.modelType + (
        '_simple' if args.simple else '')
    args.output = get_output_folder(args.output + '/' + model_name, args.env)
    env = gym.make(args.env)
    #env = gym.wrappers.Monitor(env, args.output)
    env.seed(args.seed)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    K.set_session(sess)
    K.get_session().run(tf.initialize_all_variables())

    is_linear = args.isLinear
    agent = DQNAgent(
        q_network=create_model(4, (84, 84), env.action_space.n, is_linear,
                               args.modelType),
        q_network2=create_model(4, (84, 84), env.action_space.n, is_linear,
                                args.modelType),
        preprocessor=AtariPreprocessor((84, 84)),
        memory=ReplayMemory(1000000, 4),
        gamma=0.99,
        target_update_freq=10000,
        num_burn_in=50000,
        train_freq=4,
        batch_size=32,
        is_linear=is_linear,
        model_type=args.modelType,
        use_replay_and_target_fixing=(not args.simple),
        epsilon=0,  #0.05,
        action_interval=4,
        output_path=args.output,
        save_freq=100000)

    agent.compile(lr=0.0001)
    agent.fit(env, 5000000)
    agent.load_weights()
    agent.evaluate(env, 100, video_path_suffix='final')
    env.close()