def classify(texts, output_format, architecture="gru", transformer=None):
    # load model
    model = Classifier('toxic_' + architecture)
    model.load()
    start_time = time.time()
    result = model.predict(texts, output_format)
    print("runtime: %s seconds " % (round(time.time() - start_time, 3)))
    return result
Exemple #2
0
def classify(texts, output_format):
    # load model
    model = Classifier('toxic', "gru", list_classes=list_classes)
    model.load()
    start_time = time.time()
    result = model.predict(texts, output_format)
    print("runtime: %s seconds " % (round(time.time() - start_time, 3)))
    return result
Exemple #3
0
def test():
    # load model
    model = Classifier('toxic', "gru", list_classes=list_classes)
    model.load()

    print('loading test dataset...')
    xte = load_texts_pandas("data/textClassification/toxic/test.csv")
    print('number of texts to classify:', len(xte))
    start_time = time.time()
    result = model.predict(xte, output_format="csv")
    print("runtime: %s seconds " % (round(time.time() - start_time, 3)))
    return result
def classify(texts, output_format):
    # load model
    model = Classifier('citations', "gru", list_classes=list_classes)
    model.load()
    start_time = time.time()
    result = model.predict(texts, output_format)
    runtime = round(time.time() - start_time, 3)
    if output_format is 'json':
        result["runtime"] = runtime
    else:
        print("runtime: %s seconds " % (runtime))
    return result
Exemple #5
0
def classify(texts, output_format, architecture="gru"):
    # load model
    model = Classifier('software_use',
                       model_type=architecture,
                       list_classes=list_classes)
    model.load()
    start_time = time.time()
    result = model.predict(texts, output_format)
    runtime = round(time.time() - start_time, 3)
    if output_format is 'json':
        result["runtime"] = runtime
    else:
        print("runtime: %s seconds " % (runtime))
    return result
Exemple #6
0
def classify(texts, output_format, architecture="gru", cascaded=False):
    '''
        Classify a list of texts with an existing model
    '''
    # load model
    model = Classifier('dataseer', model_type=architecture)
    model.load()
    start_time = time.time()
    result = model.predict(texts, output_format)
    runtime = round(time.time() - start_time, 3)
    if output_format is 'json':
        result["runtime"] = runtime
    else:
        print("runtime: %s seconds " % (runtime))
    return result
Exemple #7
0
def classify(texts,
             output_format,
             embeddings_name=None,
             architecture="gru",
             transformer=None):
    # load model
    model = Classifier('software_context_' + architecture)
    model.load()
    start_time = time.time()
    result = model.predict(texts, output_format)
    runtime = round(time.time() - start_time, 3)
    if output_format == 'json':
        result["runtime"] = runtime
    else:
        print("runtime: %s seconds " % (runtime))
    return result