Exemple #1
0
def focal_loss(logits, labels, alpha, gamma=2, name='focal_loss'):
  """
    Focal loss for multi classification
    :param logits: A float32 tensor of shape [batch_size num_class].
    :param labels: A int32 tensor of shape [batch_size, num_class] or [batch_size].
    :param alpha: A 1D float32 tensor for focal loss alpha hyper-parameter
    :param gamma: A scalar for focal loss gamma hyper-parameter.
    Returns: A tensor of the same shape as `lables`
    """
  if len(labels.shape) == 1:
    labels = tf.one_hot(labels, logits.shape[-1])
  else:
    labels = labels
  labels = tf.to_float(labels)

  y_pred = tf.nn.softmax(logits, dim=-1)
  L = -labels * tf.log(y_pred)
  L *= alpha * ((1 - y_pred)**gamma)
  loss = tf.reduce_sum(L)

  if tf.executing_eagerly():
    tf.contrib.summary.scalar(name, loss)
  else:
    tf.summary.scalar(name, loss)

  return loss
Exemple #2
0
  def clip_gradients(self, grads_and_vars, clip_ratio, multitask=False):
    """Clip the gradients."""
    is_zip_obj = False
    if isinstance(grads_and_vars, zip):
      grads_and_vars = list(grads_and_vars)
      is_zip_obj = True

    with tf.variable_scope('grad'):
      for grad, var in grads_and_vars:
        if grad is not None:
          if tf.executing_eagerly():
            tf.contrib.summary.histogram(var.name[:-2], grad)
          else:
            tf.summary.histogram(var.name[:-2], grad)
        else:
          logging.debug('%s gradient is None' % (var.name))

    # not clip
    if not clip_ratio:
      if is_zip_obj:
        grads, variables = zip(*grads_and_vars)
        grads_and_vars = zip(grads, variables)
      return grads_and_vars

    if multitask:
      grad_and_var_clipped, global_norm = tf.contrib.opt.clip_gradients_by_global_norm(
          grads_and_vars, clip_ratio)
    else:
      gradients, variables = zip(*grads_and_vars)
      clipped, global_norm = tf.clip_by_global_norm(gradients, clip_ratio)
      grad_and_var_clipped = zip(clipped, variables)

    if tf.executing_eagerly():
      tf.contrib.summary.scalar('gradient/global_norm', global_norm)
    else:
      tf.summary.scalar('gradient/global_norm', global_norm)

    return grad_and_var_clipped
Exemple #3
0
def summary_writer(logdir,
                   graph=None,
                   max_queue=10,
                   flush_secs=120,
                   graph_def=None,
                   filename_suffix=None,
                   session=None,
                   name=None):
    """Summary writer."""
    if tf.executing_eagerly():
        return tf.contrib.summary.create_file_writer(
            logdir,
            max_queue=max_queue,
            flush_millis=flush_secs * 1000,
            filename_suffix=filename_suffix,
            name=name)
    return tf.summary.FileWriter(logdir, graph, max_queue, flush_secs,
                                 graph_def, filename_suffix, session)
Exemple #4
0
    def test_fbank(self):
        wav_path = str(Path(PACKAGE_OPS_DIR).joinpath('data/sm1_cln.wav'))

        with self.cached_session(use_gpu=False, force_gpu=False):
            read_wav = ReadWav.params().instantiate()
            input_data, sample_rate = read_wav(wav_path)
            config = {
                'window_length': 0.025,
                'output_type': 1,
                'frame_length': 0.010,
                'snip_edges': True
            }
            fbank = Fbank.params(config).instantiate()
            fbank_test = fbank(input_data, sample_rate)

            self.assertEqual(tf.rank(fbank_test).eval(), 3)

            if tf.executing_eagerly():
                print(fbank_test.numpy()[0:2, 0:6, 0])
            else:
                print(fbank_test.eval()[0:2, 0:6, 0])
Exemple #5
0
 def testSomeTFSymbols(self):
     self.assertFalse(tf.executing_eagerly())
     self.assertIsNotNone(tf.logging)
     self.assertIsNotNone(tf.flags)
     self.assertIs(tf.Defun, function.Defun)
Exemple #6
0
def image(name, tensor, max_images=3):
    "Image"
    if tf.executing_eagerly():
        tf.contrib.summary.image(name, tensor, max_images=max_images)
    else:
        tf.summary.image(name, tensor, max_outputs=max_images)
Exemple #7
0
def audio(name, tensor, sample_rate, max_outputs=3):
    "Audio"
    if tf.executing_eagerly():
        tf.contrib.summary.audio(name, tensor, sample_rate, max_outputs)
    else:
        tf.summary.audio(name, tensor, sample_rate, max_outputs)
Exemple #8
0
def text(name, tensor):
    "Text"
    if tf.executing_eagerly():
        tf.contrib.summary.text(name, tensor)
    else:
        tf.summary.text(name, tensor)
Exemple #9
0
def histogram(name, values):
    "Histogram"
    if tf.executing_eagerly():
        tf.contrib.summary.histogram(name, values)
    else:
        tf.summary.histogram(name, values)
Exemple #10
0
def scalar(name, value):  # pylint: redefined-outer-name
    "Scalar"
    if tf.executing_eagerly():
        tf.contrib.summary.scalar(name, value)
    else:
        tf.summary.scalar(name, value)
Exemple #11
0
def flush(writer=None, name=None):
    """Flush"""
    if tf.executing_eagerly():
        tf.contrib.summary.flush(writer, name)
    else:
        tf.summary.flush(writer, name)  # pylint: disable=no-member