def test_types_comparison(self): """Various tests of types comparison.""" # primitive self.assertEqual(DInt(DSize(32)), DInt()) self.assertNotEqual(DInt(), DUInt()) self.assertNotEqual(DInt(), DInt(DSize(64))) # compound self.assertEqual(DTuple([int, bool]), DTuple([int, bool])) self.assertNotEqual(DTuple([int, bool]), DTuple([bool, int])) self.assertEqual(DArray(int, DSize(4)), DArray(int, DSize(4))) self.assertEqual(DArray(int, DSize(4)), DArray(DInt(), DSize(4))) self.assertNotEqual(DArray(int, DSize(4)), DArray(int, DSize(5))) self.assertNotEqual(DStr(), DStr(DSize(100))) self.assertEqual(DRecord(RecBI), DRecord(RecBI)) # compound: DUnion self.assertEqual(DUnion([int, bool]), DUnion([bool, int])) self.assertEqual(DUnion([int, DUnion([int, bool])]), DUnion([int, bool])) self.assertEqual(DUnion([int, DUnion([int, DUnion([int, bool])])]), DUnion([int, bool])) self.assertEqual(DUnion([int, int]), DUnion([int])) self.assertNotEqual(DUnion([DInt()]), DInt()) # special self.assertEqual(ForkedReturn(dict(x=int, y=bool, z=str)), ForkedReturn(dict(x=int, y=bool, z=str)))
def test_as_delta_type(self): """Test conversion from python to Deltaflow data types.""" # special self.assertEqual(as_delta_type(object), Top()) self.assertEqual(as_delta_type(type(object)), Top()) self.assertEqual(as_delta_type(type), Top()) self.assertEqual(as_delta_type(Void), Void) with self.assertRaises(DeltaTypeError): as_delta_type(None) with self.assertRaises(DeltaTypeError): as_delta_type(type(None)) # primitive self.assertNotEqual(as_delta_type(bool), DUInt(DSize(1))) self.assertEqual(as_delta_type(bool), DBool()) self.assertEqual(as_delta_type(np.bool_), DBool()) self.assertEqual(as_delta_type(int), DInt(DSize(32))) self.assertEqual(as_delta_type(np.int8), DChar()) self.assertEqual(as_delta_type(np.int16), DInt(DSize(16))) self.assertEqual(as_delta_type(np.int32), DInt(DSize(32))) self.assertEqual(as_delta_type(np.int64), DInt(DSize(64))) self.assertEqual(as_delta_type(np.uint8), DChar()) self.assertEqual(as_delta_type(np.uint16), DUInt(DSize(16))) self.assertEqual(as_delta_type(np.uint32), DUInt(DSize(32))) self.assertEqual(as_delta_type(np.uint64), DUInt(DSize(64))) self.assertEqual(as_delta_type(float), DFloat()) self.assertEqual(as_delta_type(np.float32), DFloat(DSize(32))) self.assertEqual(as_delta_type(np.float64), DFloat(DSize(64))) self.assertEqual(as_delta_type(complex), DComplex()) self.assertEqual(as_delta_type(np.complex64), DComplex(DSize(64))) self.assertEqual(as_delta_type(np.complex128), DComplex(DSize(128))) # compound with self.assertRaises(DeltaTypeError): as_delta_type(Tuple[int, bool]) with self.assertRaises(DeltaTypeError): as_delta_type(List[int]) self.assertNotEqual(as_delta_type(str), DArray(DChar(), DSize(1024))) self.assertEqual(as_delta_type(str), DStr()) self.assertEqual(as_delta_type(RecBI), DRecord(RecBI)) # numpy compound self.assertEqual(as_delta_type(DArray(int, DSize(5)).as_numpy_type()), DArray(int, DSize(5))) self.assertEqual(as_delta_type(DStr().as_numpy_type()), DStr()) self.assertEqual( as_delta_type(DTuple([int, bool, float]).as_numpy_type()), DTuple([int, bool, float]) ) self.assertEqual(as_delta_type(DRecord(RecBI).as_numpy_type()), DRecord(RecBI)) self.assertEqual( as_delta_type(DUnion([bool, float, int]).as_numpy_type()), DUnion([bool, float, int]))
def test_delta_type(self): """Test mapping python objects to Deltaflow data types.""" # special with self.assertRaises(DeltaTypeError): delta_type(None) # primitive self.assertEqual(delta_type(False), DBool()) self.assertEqual(delta_type(np.bool_(False)), DBool()) self.assertEqual(delta_type(5), DInt(DSize(32))) self.assertEqual(delta_type(np.int16(5)), DInt(DSize(16))) self.assertEqual(delta_type(np.int32(5)), DInt(DSize(32))) self.assertEqual(delta_type(np.int64(5)), DInt(DSize(64))) self.assertEqual(delta_type(np.uint16(5)), DUInt(DSize(16))) self.assertEqual(delta_type(np.uint32(5)), DUInt(DSize(32))) self.assertEqual(delta_type(np.uint64(5)), DUInt(DSize(64))) self.assertEqual(delta_type(4.2), DFloat(DSize(32))) self.assertEqual(delta_type(np.float32(4.2)), DFloat(DSize(32))) self.assertEqual(delta_type(np.float64(4.2)), DFloat(DSize(64))) self.assertEqual(delta_type(3+1j), DComplex(DSize(64))) self.assertEqual(delta_type(np.complex64(3+1j)), DComplex(DSize(64))) self.assertEqual(delta_type(np.complex128(3+1j)), DComplex(DSize(128))) self.assertEqual(delta_type('c'), DChar()) # compound self.assertEqual(delta_type((1, True, 3.7)), DTuple([int, bool, float])) self.assertEqual(delta_type([1, 2, 4]), DArray(int, DSize(3))) self.assertEqual(delta_type(RecBI(True, 5)), DRecord(RecBI)) # numpy compound self.assertEqual(delta_type(np.array([1, 2, 3, 4, 5])), DArray(DInt(DSize(64)), DSize(5))) self.assertEqual(delta_type(np.array([1, 2.0, 3, 4, 5])), DArray(DFloat(DSize(64)), DSize(5))) self.assertEqual(delta_type( DStr(DSize(5)).as_numpy_object("abcde")), DStr(DSize(5))) self.assertEqual( delta_type(DTuple([int, float, bool] ).as_numpy_object((1, 2.0, True))), DTuple([int, float, bool]) ) self.assertEqual( delta_type(DRecord(RecBI).as_numpy_object(RecBI(True, 2))), DRecord(RecBI) ) self.assertEqual( delta_type(DUnion([bool, float, int]).as_numpy_object(5.0)), DUnion([bool, float, int]) ) # different combinations self.assertEqual(delta_type([(4, 4.3), (2, 3.3)]), DArray(DTuple([int, float]), DSize(2)))
def test_DUnion(self): # primitive self.check(5, DUnion([int, bool])) self.check(True, DUnion([int, bool])) # compound self.check(5, DUnion([int, DTuple([int, float])])) self.check((4, 5), DUnion([int, DTuple([int, int])])) self.check((4, 5), DUnion([DArray(int, DSize(2)), DTuple([int, int])])) self.check([4, 5], DUnion([DArray(int, DSize(2)), DTuple([int, int])])) self.assertTrue(DeltaGraph.check_wire(DRaw(DUnion([DStr(), int])), DRaw(DUnion([DStr(), int]))))
def test_DArray(self): # primitive elements are properly handled # int are passed as DInt, not DUInt self.check([1, 2, 3], DArray(DInt(), DSize(3))) # for floats use a dot # might be a potential problem, due to python silent type downcasting self.check([1.0, 2.0, 3.0], DArray(DFloat(), DSize(3))) # bool are passed as DBool, not DInt self.check([True, False, False], DArray(DBool(), DSize(3))) # encapsulation of compound types self.check([[1, 2, 3], [4, 5, 6]], DArray(DArray(DInt(), DSize(3)), DSize(2))) with self.assertRaises(DeltaTypeError): self.check([1, 2, 3, 4, 5, 6], DArray(DArray(DInt(), DSize(3)), DSize(2))) with self.assertRaises(AssertionError): self.check([1, 2, 3, 4, 5, 6], DArray(DInt(), DSize(6)), DArray(DArray(DInt(), DSize(3)), DSize(2))) # mixed types self.check([(1, 2, 3), (4, 5, 6)], DArray(DTuple([int, int, int]), DSize(2))) self.check(["hello", "world"], DArray(DStr(DSize(5)), DSize(2))) # numpy self.check_numpy([1, 2, 3, 4, 5], DArray(int, DSize(5)))
def test_DStr(self): self.check('hello world', DStr()) self.check('A' * 1024, DStr()) self.check('check digits 14213', DStr()) self.check('check spaces in the end ', DStr()) self.check((-5, 'text'), DTuple([int, DStr()])) self.check(['hello', 'world!'], DArray(DStr(), DSize(2))) self.assertTrue(DeltaGraph.check_wire(DRaw(DStr()), DRaw(DStr())))
def test_size(self): """Test how many bits each data type takes.""" # primitive self.assertEqual(DInt().size, DSize(32)) self.assertEqual(DUInt().size, DSize(32)) self.assertEqual(DBool().size, DSize(1)) self.assertEqual(DChar().size, DSize(8)) self.assertEqual(DFloat().size, DSize(32)) # compound self.assertEqual(DTuple([int, bool]).size, DSize(33)) self.assertEqual(DArray(int, DSize(10)).size, DSize(320)) self.assertEqual(DStr().size, DSize(8192)) self.assertEqual(DRecord(RecBI).size, DSize(33)) # compound: DUnion self.assertEqual(DUnion([bool]).size, DSize(9)) self.assertEqual(DUnion([int, bool]).size, DSize(40)) self.assertEqual(DUnion([int, DTuple([int, int])]).size, DSize(2*32+8))
def test_str(self): """Test string representation of data types.""" # primitive self.assertEqual(str(DInt()), "DInt32") self.assertEqual(str(DInt(DSize(64))), "DInt64") self.assertEqual(str(DUInt()), "DUInt32") self.assertEqual(str(DUInt(DSize(64))), "DUInt64") self.assertEqual(str(DBool()), "DBool") self.assertEqual(str(DChar()), "DChar8") self.assertEqual(str(DFloat()), "DFloat32") self.assertEqual(str(DFloat(DSize(64))), "DFloat64") # compound self.assertEqual(str(DArray(int, DSize(8))), "[DInt32 x 8]") self.assertEqual(str(DStr()), "DStr8192") self.assertEqual(str(DStr(DSize(100))), "DStr800") self.assertEqual(str(DTuple([int, bool])), "(DInt32, DBool)") self.assertEqual(str(DRecord(RecBIS)), "{x: DBool, y: DInt32, z: DStr8192}") self.assertEqual(str(DUnion([int, bool])), "<DBool | DInt32>") # compound: DUnion self.assertEqual(str(DUnion([int])), "<DInt32>") self.assertEqual(str(DUnion([int, DUnion([int, bool])])), "<DBool | DInt32>") self.assertEqual(str(DUnion([int, DUnion([int, DUnion([int, bool])])])), "<DBool | DInt32>") # encapsulation of various types self.assertEqual(str(DUnion([int, DTuple([int, bool])])), "<(DInt32, DBool) | DInt32>") self.assertEqual(str(DArray(DTuple([int, bool]), DSize(8))), "[(DInt32, DBool) x 8]") # special self.assertEqual(str(Top()), "T") self.assertEqual(str(DSize(5)), "5") self.assertEqual(str(DSize(NamespacedName("a", "b"))), "(a.b)") self.assertEqual(str(ForkedReturn(dict(x=int, y=bool, z=str))), "ForkedReturn(x:DInt32, y:DBool, z:DStr8192)")
def test_DStr(self): self.check('hello world', DStr()) self.check('A' * 1024, DStr()) self.check('check digits 14213', DStr()) self.check('check spaces in the end ', DStr()) with self.assertRaises(DeltaTypeError): self.check('123456', DStr(DSize(4))) self.check((-5, 'text'), DTuple([int, DStr()])) self.check(['hello', 'world!'], DArray(DStr(), DSize(2))) self.check_numpy('hello world', DStr())
def test_as_python_type(self): """Test conversion of Deltaflow data types to python.""" # special self.assertEqual(Top().as_python_type(), Any) # primitive self.assertEqual(DInt(DSize(32)).as_python_type(), int) self.assertEqual(DInt(DSize(64)).as_python_type(), int) self.assertEqual(DUInt(DSize(32)).as_python_type(), int) self.assertEqual(DUInt(DSize(64)).as_python_type(), int) self.assertEqual(DBool().as_python_type(), bool) with self.assertRaises(NotImplementedError): DChar().as_python_type() self.assertEqual(DFloat(DSize(32)).as_python_type(), float) self.assertEqual(DFloat(DSize(64)).as_python_type(), float) self.assertEqual(DComplex(DSize(64)).as_python_type(), complex) self.assertEqual(DComplex(DSize(128)).as_python_type(), complex) # compound self.assertEqual(DTuple([int, bool]).as_python_type(), Tuple[int, bool]) self.assertEqual(DTuple([int, DTuple([int, bool])]).as_python_type(), Tuple[int, Tuple[int, bool]]) self.assertEqual(DArray(int, DSize(3)).as_python_type(), List[int]) self.assertEqual(DStr().as_python_type(), str) self.assertEqual(DStr(DSize(10)).as_python_type(), str) self.assertEqual(DRecord(RecBI).as_python_type(), RecBI) self.assertEqual(DRecord(RecBDi).as_python_type(), RecBDi) self.assertNotEqual(DRecord(RecBI).as_python_type(), RecBI_copy) # compound: DUnion self.assertEqual(DUnion([bool, int]).as_python_type(), Union[bool, int]) self.assertEqual(DUnion([bool, DTuple([int, bool])]).as_python_type(), Union[bool, Tuple[int, bool]])
def test_DTuple(self): # primitive elements are properly handled self.check((-5, True, 3.25), DTuple([int, bool, float])) with self.assertRaises(DeltaTypeError): self.check((-5, True, 3.25), DTuple([int, bool, int])) # incapsulation self.check((-5, (1, 2)), DTuple([int, DTuple([int, int])])) with self.assertRaises(AssertionError): self.check((-5, (1, 2)), DTuple([int, DTuple([int, int])]), DTuple([int, int, int])) # mixed types self.check(([1, 2, 3], [4.0, 5.0]), DTuple([DArray(int, DSize(3)), DArray(float, DSize(2))])) self.check(("hello", "world"), DTuple([DStr(), DStr(DSize(6))])) # numpy self.check_numpy((1, 2.0, True), DTuple([int, float, bool]))
def test_Top(self): """Everything can be accepted as Top().""" self.assertTrue(DeltaGraph.check_wire(DInt(), Top())) self.assertTrue(DeltaGraph.check_wire(DUInt(), Top())) self.assertTrue(DeltaGraph.check_wire(DBool(), Top())) self.assertTrue(DeltaGraph.check_wire(DTuple([int, bool]), Top())) self.assertTrue(DeltaGraph.check_wire(DUnion([int, bool]), Top())) self.assertTrue(DeltaGraph.check_wire(DArray(int, DSize(8)), Top())) self.assertTrue(DeltaGraph.check_wire(DStr(), Top())) self.assertTrue(DeltaGraph.check_wire(DRecord(RecBI), Top())) self.assertTrue(DeltaGraph.check_wire(Top(), Top())) with self.assertRaises(DeltaTypeError): DeltaGraph.check_wire(Top(), DInt()) # however it's not true if Top is used within a non-primitive type with self.assertRaises(DeltaTypeError): DeltaGraph.check_wire(DTuple([int, int]), DTuple([int, Top()])) with self.assertRaises(DeltaTypeError): DeltaGraph.check_wire(DArray(int, DSize(8)), DArray(Top(), DSize(8))) with self.assertRaises(DeltaTypeError): DeltaGraph.check_wire(DRecord(RecBI), DRecord(RecBT))
def test_DUnion(self): # primitive self.check(5, DUnion([int, bool]), DUnion([int, bool])) self.check(True, DUnion([int, bool]), DUnion([bool, int])) # compound self.check(5, DUnion([int, DTuple([int, float])])) self.check((4, 5), DUnion([int, DTuple([int, int])])) self.check((4, 5), DUnion([DArray(int, DSize(2)), DTuple([int, int])])) self.check([4, 5], DUnion([DArray(int, DSize(2)), DTuple([int, int])])) # buffer's size is always the same self.assertEqual(len(DUnion([int, bool]).pack(5)), DUnion([int, bool]).size.val) self.assertEqual(len(DUnion([int, bool]).pack(True)), DUnion([int, bool]).size.val) # numpy (throws error) with self.assertRaises( DeltaTypeError, msg="NumPy unions cannot be converted to Python types."): self.check_numpy(5, DUnion([bool, float, int]))
def test_DTuple(self): # primitive elements are poperly handled self.check((-5, True, 3.25), DTuple([int, bool, float])) # incapsulation self.check((-5, (1, 2)), DTuple([int, DTuple([int, int])])) # mixed types self.check(([1, 2, 3], [4.0, 5.0]), DTuple([DArray(int, DSize(3)), DArray(float, DSize(2))])) self.check(("hello", "world"), DTuple([DStr(), DStr(DSize(6))])) self.assertTrue(DeltaGraph.check_wire(DRaw(DTuple([DStr(), int])), DRaw(DTuple([DStr(), int]))))
def test_DTuple(self): """Only strict typing.""" self.assertTrue(DeltaGraph.check_wire(DTuple([int, bool]), DTuple([int, bool]))) with self.assertRaises(DeltaTypeError): DeltaGraph.check_wire(DTuple([int, bool]), DTuple([bool, int])) with self.assertRaises(DeltaTypeError): DeltaGraph.check_wire(DTuple([int, bool]), DTuple([int, bool, bool]))
def test_DRecord(self): # primitive self.check(RecBI(True, 5), DRecord(RecBI)) self.check(-4, DInt()) self.check(RecBII(True, 5, -4), DRecord(RecBII)) # mixed self.check(RecIT(-4.0, (1, 2)), DRecord(RecIT)) self.check(RecATI([1, 2], (3.0, 4), 5), DRecord(RecATI)) self.check((RecIT(-4.0, (1, 2)), 1), DTuple([DRecord(RecIT), int])) self.check([RecIT(-4.0, (1, 2)), RecIT(5.0, (-3, -4))], DArray(DRecord(RecIT), DSize(2))) self.assertTrue(DeltaGraph.check_wire(DRaw(DRecord(RecIT)), DRaw(DRecord(RecIT))))
def test_DRecord(self): # primitive self.check(RecBI(True, 5), DRecord(RecBI)) self.check(-4, DInt()) self.check(RecBII(True, 5, -4), DRecord(RecBII)) with self.assertRaises(DeltaTypeError): self.check(RecBI(True, 5), DRecord(RecIB)) # mixed self.check(RecIT(-4.0, (1, 2)), DRecord(RecIT)) self.check(RecATI([1, 2], (3.0, 4), 5), DRecord(RecATI)) self.check((RecIT(-4.0, (1, 2)), 1), DTuple([DRecord(RecIT), int])) self.check([RecIT(-4.0, (1, 2)), RecIT(5.0, (-3, -4))], DArray(DRecord(RecIT), DSize(2))) # numpy self.check_numpy(RecBI(False, 2), DRecord(RecBI))
def test_compound_objects(self): t = DArray(DTuple([bool, int]), DSize(3)) val = [(True, 1), (False, 2), (True, 3), (False, 4), (True, 5)] self.check(val, t) t = DTuple([int, DTuple([bool, int])]) val = (12, (True, 8)) self.check(val, t) t = DTuple([int, DArray(int, DSize(2))]) val = (12, [14, 18]) self.check(val, t) t = DTuple([int, DStr()]) val = (12, "hello") self.check(val, t) t = DTuple([int, DRecord(RecBI)]) val = (12, RecBI(True, 8)) self.check(val, t) t = DTuple([int, DUnion([bool, int])]) val = (12, True) np_val = t.as_numpy_object(val) self.assertEqual(DInt().from_numpy_object(np_val[0][0]), 12) self.assertEqual(DBool().from_numpy_object(np_val[0][1][1]), True) t = DRecord(RecATI) val = RecATI([1, 2], (3.0, 4), 5) self.check(val, t) t = DUnion([DArray(int, DSize(2)), int]) val = [1, 2] np_val = t.as_numpy_object(val) new_val = DArray(int, DSize(2)).from_numpy_object(np_val[0][1]) self.assertEqual(val, new_val) t = DUnion([str, int]) val = "abcde" np_val = t.as_numpy_object(val) new_val = DStr().from_numpy_object(np_val[0][1]) self.assertEqual(val, new_val)
def test_DTuple_object(self): t = DTuple((int, bool, DChar())) self.check((5, True, 'c'), t)
def test_DTuple_type(self): tuple_type = DTuple((int, bool, DChar())).as_numpy_type() self.assertEqual(tuple_type[0], np.int32) self.assertEqual(tuple_type[1], np.bool_) self.assertEqual(tuple_type[2], np.uint8)
class RecIT: x: float = attr.ib() y: DTuple([int, int]) = attr.ib()
class RecATI: x: DArray(int, DSize(2)) = attr.ib() y: DTuple([float, int]) = attr.ib() z: int = attr.ib()
def test_can_save_to_tempfile(self): """Test StateSaver can save to a file.""" st = [(k, k**2) for k in range(5)] # Note the conversion to a list as the json format doesn't care # for tuples. st_expected = "\n".join(repr(list(x)) for x in st) items = [ ((int, int), (42, 100), "[42, 100]"), ((int, int), st, st_expected), (str, "Hello", '"Hello"'), (bool, True, "true"), (float, 3.91, "3.91"), (DTuple([int, int]), (1, 2), "[1, 2]"), (DUnion([int, float]), 90, "90"), (DUnion([int, float]), 90.0, "90.0"), (complex, 1j, '{"real": 0.0, "imaginary": 1.0}'), (SimpleRecord, SimpleRecord(x=1, y=True), '{"x": 1, "y": true}'), ( ComplexRecord, ComplexRecord(x=1 + 2j), '{"x": {"real": 1.0, "imaginary": 2.0}}' ), ( NestedRecord, NestedRecord(x=3, y=SimpleRecord(x=1, y=True)), '{"x": 3, "y": {"x": 1, "y": true}}' ), ( ArrayRecord, ArrayRecord(x=[ComplexRecord(x=-1+4j)]), '{"x": [{"x": {"real": -1.0, "imaginary": 4.0}}]}' ) ] for i, item in enumerate(items): t, data, expected = item with self.subTest(i=i): with tempfile.NamedTemporaryFile(mode="w+") as f: s = StateSaver(t, verbose=True, filename=f.name) @DeltaBlock(allow_const=False) def save_things_node() -> object: # If it's a list, save them independently, otherwise # it's just one thing. if type(data) == list: for d in data: s.save(d) else: s.save(data) raise DeltaRuntimeExit with DeltaGraph() as graph: save_things_node() rt = DeltaPySimulator(graph) rt.run() f.seek(0) contents = f.read() self.assertEqual(contents, f"{expected}\n")