def demo_mode(): try: points = ImageRandomiser(IMAGE_NAME, IMAGE_SIZE, IMAGE_SIZE, PIXEL_SIZE, CAMERA) demo.run(args.time, points, DISPLAY, KEYBOARD) except Exception as e: LOGGER.info(str(e)) KEYBOARD.close() DISPLAY.stop()
def bibi(self): url = "https://passport.bilibili.com/login" self.browser.get(url) xpath = '//*[@id="login-username"]' self.wait.until(EC.presence_of_element_located( (By.XPATH, xpath))).send_keys('Python') xpath = '//*[@id="login-passwd"]' self.wait.until(EC.presence_of_element_located( (By.XPATH, xpath))).send_keys('Python') xpath = '//*[@id="geetest-wrap"]/div/div[5]/a[1]' self.click(xpath) xpath = '/html/body/div[2]/div[2]/div[6]/div/div/div[2]/div[1]/div/div[2]/img' logo = self.wait.until( EC.presence_of_element_located((By.XPATH, xpath))) f = logo.get_attribute('src') if f: res = requests.get(f) res = res.content with open(f"bilbil.jpg", 'wb') as f: f.write(res) res = demo.run("bilbil.jpg") plan = demo.to_selenium(res) # xpath = "/html/body/div[2]/div[2]/div[6]/div/div/div[2]/div[1]/div/div[2]" # logo = self.wait.until(EC.presence_of_element_located( # (By.XPATH, xpath))) print(logo.location) print(logo.size) X, Y = logo.location['x'], logo.location['y'] print(X, Y) lan_x = 259 / 334 lan_y = 290 / 384 # print(X+x, Y+y) time.sleep(1) # ActionChains(self.browser).move_by_offset(200, 0).click().perform() for p in plan: x, y = p['place'] print(x, y) ActionChains(self.browser).move_by_offset( X - 40 + x * lan_x, Y + y * lan_y).click().perform() ActionChains(self.browser).move_by_offset( -(X - 40 + x * lan_x), -(Y + y * lan_y)).perform() # 将鼠标位置恢复到移动前 time.sleep(1) xpath = "/html/body/div[2]/div[2]/div[6]/div/div/div[3]/a/div" self.click(xpath) print(res) print(plan) time.sleep(1000)
"metric (object appearance).", type=float, default=0.2) parser.add_argument("--nn_budget", help="Maximum size of the appearance descriptors " "gallery. If None, no budget is enforced.", type=int, default=100) return parser.parse_args() if __name__ == "__main__": args = parse_args() os.makedirs(args.output_dir, exist_ok=True) sequences = os.listdir(args.mot_dir) for sequence in sequences: print("Running sequence %s" % sequence) sequence_dir = os.path.join(args.mot_dir, sequence) detection_file = os.path.join(args.detection_dir, "%s.npy" % sequence) output_file = os.path.join(args.output_dir, "%s.txt" % sequence) demo.run(sequence_dir, detection_file, output_file, args.min_confidence, args.nms_max_overlap, args.min_detection_height, args.max_cosine_distance, args.nn_budget, display=False)
from demo import run, get_args parser = argparse.ArgumentParser() parser.add_argument('--gpuid', type=int, default=0, help="Negative value means cpu-only") parser.add_argument('--loss', type=str, default='CCL', choices=['KCL', 'CCL'], help="The clustering criteria. Default: CCL") parser.add_argument('--num_cluster', type=int, default=100, help="The number of cluster. Default: 100 (unknown number of cluster)") config = parser.parse_args() print('STEP1: Train SPN on Omniglot background set') if not os.path.isfile('outputs/Omniglot_VGGS_DPS.model.pth'): argv = '--loss DPS --dataset Omniglot --model_type vgg --model_name VGGS --schedule 30 40 --epochs 50'.split(' ') run(get_args(argv)) print('STEP1: Done') omniglot_evaluation_alphabet_set = [ 'Angelic', 'Atemayar_Qelisayer', 'Atlantean', 'Aurek', 'Avesta', 'Ge_ez', 'Glagolitic', 'Gurmukhi', 'Kannada', 'Keble', 'Malayalam',
import demo demo.run() exit()
type=str, default='train', help='train, test or demo.') parser.add_argument('--demo_path', type=str, default='demo/inputs/1', help='Please specify the demo path.') return parser.parse_args() if __name__ == '__main__': args = parse_args() cfg = CONFIG(args.config) cfg.update_config(args.__dict__) from net_utils.utils import initiate_environment initiate_environment(cfg.config) '''Configuration''' cfg.log_string('Loading configurations.') cfg.log_string(cfg.config) cfg.write_config() '''Run''' if cfg.config['mode'] == 'train': import train train.run(cfg) if cfg.config['mode'] == 'test': import test test.run(cfg) if cfg.config['mode'] == 'demo': import demo demo.run(cfg)
self.emit("click", date_time) def get_click_count(self): return self.invoke("getClickCount") class SimpleDemo(demo.DemoApp): def __init__(self): self._web_widget = SimpleWebWidget() self._web_widget.connect("click", self._on_click) def get_title(self): return "Simple Demo" def get_description(self): return """Demonstrates message passing between Python and JavaScript in an embedded HTML page. Click events are logged in the console.""" def get_content(self): return self._web_widget def _on_click(self, widget, date_time): print "clicked: ", date_time print "click count: " , self._web_widget.get_click_count() if __name__ == '__main__': demo = SimpleDemo() demo.build_ui() demo.run()
def main(): try: import demo demo.run() except ImportError: print("Warning: demo.py not found.")
import demo if __name__ == '__main__': #min_learning_rate = 0.0001 demo.run(0.0001) for i in range(55, 100): demo.run(float(i)/1000000) #new_err = (demo.run(0.0001) #if (float(new_err) < float(min_err)): #min_err = new_err #min_learning_rate = i #print(min_err) #print(min_learning_rate) """finding the min here is difficult due to float limitations. Python Decimals may be too slow."""
if frame_number % 80 == 0: if i == 1: name = "img/" + str(frame_number) + '.jpg' cv2.imwrite(name, face) else: name = "img/" + str(frame_number) + '_' + str(i) + '.jpg' cv2.imwrite(name, face) i += 1 score = 0 index = 0 for n in range(len(known_faces_name)): path = "face/" + known_faces_name[n] + ".png" score_new = demo.run(appid=APPID, apisecret=APISECRET, apikey=APIKEY, img1_path=path, img2_path=name) if (score < score_new) and (score_new > 0.5): score = score_new index = n face_names.append(known_faces_name[index]) else: face_names.append("") for n in range(len(known_faces_name)): if frame_number <= frame_last_number[n]: frame = cv2ImgAddText(frame, known_faces_name[n], frame_left[n], frame_top[n], (255, 0, 0), 50) frame = cv2ImgAddText(frame, contents[n], frame_left[n], frame_top[n] + 100, (255, 0, 0), 25)
def __init__(self): save_files = session.query(Player).filter_by(id=1).all() # save_files = [] while True: print("[N]ew Game") if save_files: print("[C]ontinue") else: cprint("[C]ontinue", "grey") choice = input() if choice.lower() == 'n': for each in views.intro: print (each) print(views.cont) input() print("Do-do-do-do-da-dodo") print("Not Golden Sun") new = Player(gender = views.gender(self), name = views.name(), level = 10, hp = 50, max_hp = 50, mp = 9, max_mp = 9, strength = 50, fortitude = 50, agility = 45, skill_points = 0, gold = 20, poisoned = False ) skills = [] print("*TEST*"*5, "\nWhat skills do you want?") for each in session.query(Skill).all(): while True: # output = each.name, str(index) print(each.name, "\ny/n") choice = input() if choice == 'y': skills.append(each) break elif choice == 'n': break break elif choice.lower() == 'c': if save_files: for index, each in enumerate(save_files, start=1): print(index, each.name) choice = input() if int(choice) in range(1, len(save_files)+1): new = save_files[int(choice)-1] skills = [session.query(Skill).filter_by(id = each.skill_id).all()[0] for each in session.query(SkillOwnership).filter_by(player_id = new.id).all()] break else: print("You have no saved games.") input(views.cont) else: print(views.try_again) input(views.cont) choice = demo.run(new, skills) if choice == 'battle': battle.Battle(new, skills).encounter()
def detect(queue, lock, config): url = 'http://10.75.4.42:10595/v1/malfunction/addMalfunctionRecord' malfunction_topic = 'bao_malfunction_steel' malfunction_status = False malfunction_count = 0 malfunction_count_threshold = 40 normal_count = 0 normal_count_threshold = 30 video_duration = 5 # record for 5 seconds video_timer = 0 video_num = 0 record_on = False # record timer for test purpose record_timer = 0 millis = int(round(time.time() * 1000)) servers = config.get('kafka', 'servers') producer = KafkaProducer(bootstrap_servers=servers) fourcc = cv2.VideoWriter_fourcc(*'avc1') while True: start = time.time() # lock.acquire() if queue.full(): logging.error('detect queue full') if not queue.empty(): data = queue.get() frame = data['data'] # lock.release() print('detecting the image') _, processed_frame, warning = demo.run(frame) if warning: malfunction_count += 1 # report malfunction if count > threshold if malfunction_count > malfunction_count_threshold: if not malfunction_status: print('malfunction recognized') malfunction_status = True current_time = int(time.time()) # set a gap period of 15 minuets for recording to avoid too much testing data if current_time - record_timer > 15 * 60: print('recording start') record_timer = current_time record_on = True file_name = 'malfunction_{0}.mp4'.format(video_num) video_num += 1 out = cv2.VideoWriter('video/' + file_name, fourcc, 25, (1024, 576)) else: # send the malfunction image stream to kafka _, img_encode = cv2.imencode('.jpg', processed_frame) img_base64 = base64.b64encode(img_encode) msg_dict = { "type": "卡钢", "position": data['position'], "timestamp": millis, "data": str(img_base64, 'ASCII'), "complete": 1, "desc": data['position'] + "卡钢" } message = json.dumps(msg_dict).encode('utf-8') try: producer.send(malfunction_topic, message) except KafkaError as e: logging.error(e) elif malfunction_status: # check malfunction stop if normal_count < normal_count_threshold: # keep malfunction status and send the malfunction image stream to kafka _, img_encode = cv2.imencode('.jpg', processed_frame) img_base64 = base64.b64encode(img_encode) msg_dict = { "type": "卡钢", "position": data['position'], "timestamp": millis, "data": str(img_base64, 'ASCII'), "complete": 1, "desc": data['position'] + "卡钢" } message = json.dumps(msg_dict).encode('utf-8') try: producer.send(malfunction_topic, message) except KafkaError as e: logging.error(e) normal_count += 1 else: # malfunction stop, send the last frame to kafka with complete flag of 0 _, img_encode = cv2.imencode('.jpg', processed_frame) img_base64 = base64.b64encode(img_encode) msg_dict = { "type": "卡钢", "position": data['position'], "timestamp": millis, "data": str(img_base64, 'ASCII'), "complete": 0, "desc": data['position'] + "卡钢" } # msg_dict['data'] = str(img_base64, 'ASCII') message = json.dumps(msg_dict).encode('utf-8') try: for i in range( 2 ): # Simply send two times for frontend to stop the malfunction image producer.send(malfunction_topic, message) except KafkaError as e: logging.error(e) malfunction_status = False # print('{0} frames in this malfunction'.format(malfunction_count)) malfunction_count = 0 print('malfunction stop') normal_count = 0 else: malfunction_count = 0 # Record the malfunction video for a period of time if record_on and video_timer < video_duration * 25: out.write(processed_frame) video_timer += 1 elif video_timer >= video_duration * 25: # recording finished print('recording stop') video_timer = 0 out.release() record_on = False # save the malfunction record params = { "cameraId": 1, "desc": data['position'] + "卡钢", "eventTime": millis, "position": data['position'], "type": "卡钢", "videoPath": file_name } r = requests.put(url, json=params) response = json.loads(r.content) if response['success']: print('Record saved') else: print('Record save failed') # else: # lock.release() end = time.time() print('time for detecting {0}'.format(end - start))