def create(cls, name, title, description, owners=None, readers=None, writers=None, vector_client=None): """ Create a vector product in your catalog. Example ------- >>> from descarteslabs.vectors import FeatureCollection >>> FeatureCollection.create(name='foo', ... title='My Foo Vector Collection', ... description='Just a test') # doctest: +SKIP """ params = dict( name=name, title=title, description=description, owners=owners, readers=readers, writers=writers, ) if vector_client is None: vector_client = Vector() return cls._from_jsonapi( vector_client.create_product(**params).data, vector_client)
def create(cls, product_id, title, description, owners=None, readers=None, writers=None, vector_client=None): """ Create a vector product in your catalog. Parameters ---------- product_id : str A unique name for this product. In the created product a namespace consisting of your user id (e.g. "ae60fc891312ggadc94ade8062213b0063335a3c:") or your organization id (e.g., "yourcompany:") will be prefixed to this, if it doesn't already have one, in order to make the id globally unique. title : str A more verbose and expressive name for display purposes. description : str Information about the `FeatureCollection`, why it exists, and what it provides. owners : list(str), optional User, group, or organization IDs that own the newly created FeatureCollection. Defaults to [``current user``, ``current org``]. The owner can edit and delete this `FeatureCollection`. readers : list(str), optional User, group, or organization IDs that can read the newly created `FeatureCollection`. writers : list(str), optional User, group, or organization IDs that can edit the newly created `FeatureCollection` (includes read permission). Example ------- >>> from descarteslabs.vectors import FeatureCollection >>> FeatureCollection.create(product_id='foo', ... title='My Foo Vector Collection', ... description='Just a test') # doctest: +SKIP """ params = dict( product_id=product_id, title=title, description=description, owners=owners, readers=readers, writers=writers, ) if vector_client is None: vector_client = Vector() return cls._from_jsonapi( vector_client.create_product(**params).data, vector_client)
def __init__(self, guid, tuid=None, client=None, result_attrs=None, key=None): if client is None: from descarteslabs.client.services.vector import Vector # circular import client = Vector() super(ExportTask, self).__init__(guid, tuid, client=client) self.export_id = tuid self._task_result = result_attrs self._set_key(key)
def create(cls, name, title, description, owners=None, readers=None, writers=None, vector_client=None): """ Create a vector product in your catalog. Parameters ---------- name : str A short name without spaces (like a handle). title : str A more verbose and expressive name for display purposes. description : str Information about the `FeatureCollection`, why it exists, and what it provides. owners : list(str), optional User, group, or organization IDs that own the newly created FeatureCollection. Defaults to [``current user``, ``current org``]. The owner can edit and delete this `FeatureCollection`. readers : list(str), optional User, group, or organization IDs that can read the newly created `FeatureCollection`. writers : list(str), optional User, group, or organization IDs that can edit the newly created `FeatureCollection` (includes read permission). Example ------- >>> from descarteslabs.vectors import FeatureCollection >>> FeatureCollection.create(name='foo', ... title='My Foo Vector Collection', ... description='Just a test') # doctest: +SKIP """ params = dict( name=name, title=title, description=description, owners=owners, readers=readers, writers=writers, ) if vector_client is None: vector_client = Vector() return cls._from_jsonapi( vector_client.create_product(**params).data, vector_client)
def __init__(self, guid, tuid=None, client=None, upload_id=None, result_attrs=None): if client is None: from descarteslabs.client.services.vector import Vector # circular import client = Vector() super(UploadTask, self).__init__(guid, tuid, client=client) self._upload_id = upload_id self._task_result = result_attrs
def list(cls, vector_client=None): """ List all ``FeatureCollection`` products that you have access to. Returns ------- list(:class:`FeatureCollection`) A list of all products that you have access to. Raises ------ ~descarteslabs.client.exceptions.NotFoundError Raised if subsequent pages cannot be found. ~descarteslabs.client.exceptions.RateLimitError Raised when too many requests have been made within a given time period. ~descarteslabs.client.exceptions.ServerError Raised when a unknown error occurred on the server. Example ------- >>> from descarteslabs.vectors import FeatureCollection >>> FeatureCollection.list() # doctest: +SKIP """ if vector_client is None: vector_client = Vector() list = [] page = 1 # The first page will always succeed... response = vector_client.list_products(page=page) while len(response) > 0: partial_list = [ cls._from_jsonapi(fc, vector_client) for fc in response.data ] list.extend(partial_list) page += 1 # Subsequent pages may throw NotFoundError try: response = vector_client.list_products(page=page) except NotFoundError: response = [] return list
def list(cls, vector_client=None): """ List all `FeatureCollection` products that you have access to. Returns ------- list(`FeatureCollection`) A list of all products that you have access to. Example ------- >>> from descarteslabs.vectors import FeatureCollection >>> FeatureCollection.list() # doctest: +SKIP """ if vector_client is None: vector_client = Vector() list = [] page = 1 # The first page will always succeed... response = vector_client.list_products(page=page) while len(response) > 0: partial_list = [ cls._from_jsonapi(fc, vector_client) for fc in response.data ] list.extend(partial_list) page += 1 # Subsequent pages may throw NotFoundError try: response = vector_client.list_products(page=page) except NotFoundError: response = [] return list
def setUp(self): self.url = "http://example.vector.com" self.gcs_url = "http://example.gcs.com" self.client = Vector(url=self.url, auth=Auth(jwt_token=public_token, token_info_path=None)) self.match_url = re.compile(self.url) self.match_gcs_url = re.compile(self.gcs_url) self.attrs = { 'geometry': { 'coordinates': [[[-113.40087890624999, 40.069664523297774], [-111.434326171875, 40.069664523297774], [-111.434326171875, 41.918628865183045], [-113.40087890624999, 41.918628865183045], [-113.40087890624999, 40.069664523297774]]], 'type': 'Polygon' }, 'properties': { 'baz': 1.0, 'foo': 'bar' } } self.product_response = { 'data': { 'attributes': { 'description': 'bar', 'name': 'new-test-product', 'owners': [ 'org:descarteslabs', 'user:3d7bf4b0b1f4e6283e5cbeaadddbc6de6f16dea1' ], 'readers': [], 'title': 'Test Product', 'writers': [] }, 'id': '2b4552ff4b8a4bb5bb278c94005db50', 'meta': { 'created': '2018-12-27T17:01:16.197369' }, 'type': 'product' } } self.status_response = { 'data': { 'attributes': { 'created': '2019-01-03T20:07:51.720000+00:00', 'started': '2019-01-03T20:07:51.903000+00:00', 'status': 'RUNNING' }, 'id': 'c589d688-3230-4caf-9f9d-18854f71e91d', 'type': 'copy_query' } }
def setUp(self): url = "http://example.com" self.client = Vector( url=url, auth=Auth(jwt_token=public_token, token_info_path=None) ) self.match_url = re.compile(url)
def vector_client(self): if self._vector_client is None: self._vector_client = Vector() return self._vector_client
def create( cls, product_id, title, description, owners=None, readers=None, writers=None, vector_client=None, ): """ Create a vector product in your catalog. Parameters ---------- product_id : str A unique name for this product. In the created product a namespace consisting of your user id (e.g. "ae60fc891312ggadc94ade8062213b0063335a3c:") or your organization id (e.g., "yourcompany:") will be prefixed to this, if it doesn't already have one, in order to make the id globally unique. title : str A more verbose and expressive name for display purposes. description : str Information about the ``FeatureCollection``, why it exists, and what it provides. owners : list(str), optional User, group, or organization IDs that own the newly created FeatureCollection. Defaults to [``current user``, ``current org``]. The owner can edit and delete this ``FeatureCollection``. readers : list(str), optional User, group, or organization IDs that can read the newly created ``FeatureCollection``. writers : list(str), optional User, group, or organization IDs that can edit the newly created ``FeatureCollection`` (includes read permission). Returns ------- :class:`FeatureCollection` A new ``FeatureCollection``. Raises ------ ~descarteslabs.client.exceptions.BadRequestError Raised when the request is malformed, e.g. the supplied product id is already in use. ~descarteslabs.client.exceptions.RateLimitError Raised when too many requests have been made within a given time period. ~descarteslabs.client.exceptions.ServerError Raised when a unknown error occurred on the server. Example ------- >>> from descarteslabs.vectors import FeatureCollection >>> FeatureCollection.create(product_id='my-vector-product-id', ... title='My Vector Collection', ... description='Just a test') # doctest: +SKIP """ params = dict( product_id=product_id, title=title, description=description, owners=owners, readers=readers, writers=writers, ) if vector_client is None: vector_client = Vector() return cls._from_jsonapi( vector_client.create_product(**params).data, vector_client)
def setUp(self): self.url = "http://example.vector.com" self.gcs_url = "http://example.gcs.com" self.client = Vector(url=self.url, auth=Auth(jwt_token=public_token, token_info_path=None)) self.match_url = re.compile(self.url) self.match_gcs_url = re.compile(self.gcs_url) self.attrs = { "geometry": { "coordinates": [[ [-113.40087890624999, 40.069664523297774], [-111.434326171875, 40.069664523297774], [-111.434326171875, 41.918628865183045], [-113.40087890624999, 41.918628865183045], [-113.40087890624999, 40.069664523297774], ]], "type": "Polygon", }, "properties": { "baz": 1.0, "foo": "bar" }, } self.product_response = { "data": { "attributes": { "description": "bar", "name": "new-test-product", "owners": [ "org:descarteslabs", "user:3d7bf4b0b1f4e6283e5cbeaadddbc6de6f16dea1", ], "readers": [], "title": "Test Product", "writers": [], }, "id": "2b4552ff4b8a4bb5bb278c94005db50", "meta": { "created": "2018-12-27T17:01:16.197369" }, "type": "product", } } self.status_response = { "data": { "attributes": { "created": "2019-01-03T20:07:51.720000+00:00", "started": "2019-01-03T20:07:51.903000+00:00", "status": "RUNNING", }, "id": "c589d688-3230-4caf-9f9d-18854f71e91d", "type": "copy_query", } } self.feature_response = { "data": [{ "attributes": { "created": "2019-03-28T23:08:24.991729+00:00", "geometry": { "coordinates": [[[-95, 42], [-95, 41], [-93, 40], [-93, 42], [-95, 42]]], "type": "Polygon", }, "properties": {}, }, "id": "7d724ae48d1fab595bc95b6091b005c920327", "type": "feature", }] }